
 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Q-1 Discuss Feature of SQL server 2000.
SQL Server 2000 includes a number of features that support ease of

installation, deployment, and use; scalability; data warehousing; and system
integration with other server software.

Ease of Installation, Deployment, and Use
SQL Server 2000 includes many tools and features that simplify the process of

installing, deploying, managing, and using databases. SQL Server 2000 provides
database administrators with all of the tools that are required to fine-tune SQL Server
2000 installations that run production online systems. SQL Server 2000 is also capable
of operating efficiently on a small, single-user system with minimal administrative
over head. The installation or upgrade of SQL Server 2000 is driven by a Graphical
User Interface (GUI) application that guides users in providing the information that
SQL Server 2000 Setup needs. The Setup program itself automatically detects whether
an earlier version of SQL Server is present, and after SQL Server 2000 is installed, it
asks users whether they want to launch the SQL Server 2000 Upgrade wizard to
quickly guide them through the upgrade process. The entire installation or upgrade
process is accomplished quickly and with minimal input from the users.

SQL Server 2000 reconfigures itself automatically and dynamically while
running. As more users connect to SQL Server 2000, it can dynamically acquire
additional resources, such as memory. As the workbad falls, SQL Server 2000 frees
the resources back to the system. If other applications are started on the server, SQL
Server 2000 will detect the additional allocations of virtual memory to those
applications and reduce its use of virtual memory in order to reduce paging overhead.

SQL Server 2000 can also increase or decrease the size of a database
automatically as data is inserted or deleted. SQL Server 2000 offers database
administrators several tools for managing their systems, such as SQL Server
Enterprise Managerand SQL Profiler.

Scalability
The SQL Server 2000 database engine is a robust server that can manage

terabyte databases being accessed by thousands of users. At the same time, when
running at its default settings, SQL Server 2000 has features such as dynamic
self-tuning that enable it to work effectively on laptops and desktops without
burdening users with administrative tasks.

SQL Server 2000 includes several features that extend the scalability of the
system. For example, SQL Server 2000 dynamically adjusts the granularity of locking
to the appropriate level for each table referenced by a query and has high-speed
optimizations that support Very Large Database (VLDB) environments. In addition,
SQL Server 2000 can build parallel execution plans that split the processhg of a SQL
statement into several parts. Each part can be run on a different Central Processhg Unit
(CPU), and the complete result set is built more quickly than if the different parts were
executed serially. Many of the features that support the extended scalability of SQL
Server 2000 are discussed in more detail throughout the training kit.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Data Warehousing
A data warehouse is a database that is specifically structured to enable flexible

queries of the data set and decision-making analysis of the result set. A data
warehouse typically contains data representing the business history of an organization.
A data mart is a subset of the contents of a data warehouse. A data mart tends to
contain data that is focused at the department level, or on a specific business area.
SQL Server 2000 includes several components that improve the capability to build
data warehouses that effectively support decision support processing needs:

Data Warehousing Framework. A set of components and Applicatbn
Programming Interfaces (APb)that implement the data warehousing features of
SQL Server 2000.
Data Transformation Services (DTS). A set of services thataids in building a
data warehouse or data mart.
Meta Data Services. A set of ActiveX interfaces and information models that
define the database schema and data transformations implemented by the Data
Warehousing Framework. A schema is a method fordefining and organizing
data, which is also called metadata.
Analysis Services. A setof services that provide OLAP processing capabilities
against heterogeneous OLE DB data sources.
English Query. An application devebpment productthatenables users to ask

questions in English, rather than in a computer language such as SQL.

System Integration
SQL Server 2000 works with other products to form a stable and secure data

store for Internet and intranet systems:
SQL Server 2000 works with Windows 2000 Serverand Windows NT Server

security and encryption facilities to implement secure datastorage. SQL Server 2000
forms a high-performance data storage service for Web applicatbns running under
Microsoft Internet Informatbn Services. SQL Server 2000 can be used with Site Server
to build and maintain large, sophisticated e-commerce Web sites.

The SQL Server 2000 TCP/IP Sockets communications support can be
integrated with Mbrosoft Proxy Server to implement secure Internet and intranet
communbatbns. SQL Server 2000 is scalable to levels of performance capable of
handling extremely large Internet sites. In additbn, the SQL Server 2000 database
engine includes native support for XML, and the Web Assistant Wizard helps you to
generate Hypertext Markup Language (HTML) pages from SQL Server 2000 data and
to post SQL Server 2000 data to Hypertext Transport Protocol (HTTP) and File
Transfer Protocol (FTP) locations. SQL Server supports Windows Authenticatbn,
which enables Windows NT and Windows 2000 user and domain accounts to be used
as SQL Server 2000 bgin accounts. Users are validated by Windows 2000 when they
connect to the network. When a connection is formed with SQL Server, the SQL
Server client software requests a trusted connection, whbh can be granted only if they
have been validated by Windows NT or Windows 2000. SQL Server, then, does not
have to validate users separately. Users are not required to have separate logins and

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

passwords for each SQL Server system to which they connect. SQL Server 2000 can
send and receive e-mail and pages from Microsoft Exchange or other Message
Application Programming Interface (MAPI)-compliant mail servers. This function
enables SQL Server 2000 batches, stored procedures, or triggers to send e-mail. SQL
Server 2000 events and alerts can be set to send e-mail or pages automatically to the
serveradministrators in case ofsevere or pending problems.

Q-2 Explain Different Edition of SQL Server 2000 ?
Editions of SQL Server 2000

SQL Server 2000 is available in different editions to accommodate the unique
performance,run-time, and price requirements of different organizations and
individuals.

SQL Server 2000 Enterprise Edition. This edition is the complete SQL
Server offering for any organization. The Enterprse Edition offers the advanced
scalability and reliability features that are necessary for missbn-critical line-ofbusiness
and Internet scenarbs, including Distributed Partitioned Views, log shipping, and
enhanced failover clustering. This edition also takes full advantage of the highest-end
hardware, with support for up to 32 CPUs and 64 GB of RAM. In additbn, the SQL
Server 2000 Enterprise Edition includes advanced analysis features.

SQL Server 2000 Standard Edition. This edition is the affordable option for
small- and medium-sized organizations that do not require advanced scalability and
availability features or all of the more advanced analysis features of the SQL Server
2000 Enterprise Editbn. You can use the Standard Edition on symmetric
multi-processing systems with up to fourCPUs and 2 GB of RAM.

SQL Server2000 Personal Edition. This edition includes a full set of
management tools and most of the functionality of the Standard Edition, but it is
optimized for personal use. In addition to running on Microsoft's server operating
systems, the Personal Edition runs on non-server operating systems, including
Windows 2000 Professional, Windows NT Workstation 4.0, and Windows 98.
Dual-processor systems are also supported. While this edition supports databases of
any size, its performance is optimized for single users and small workgroups and
degrades with workloads generated by more than five concurrent users.

SQL Server 2000 Developer Edition. This SQL Server offering enables
developers to build any type of application on top of SQL Server. This edition includes
all of the functionality of the Enterprise Edition but with a special development and
test end-user license agreement (EULA) that prohibits productbn deployment.

SQL Server 2000 Desktop Engine (MSDE). This edition has the basic
database engine features of SQL Server 2000. This edition does not include a user
interface, management tools, analysis capabilities, merge replication support, client
access licenses, developer libraries, or Books Online. This editbn also limits the
database size and user workload. Desktop Engine has the smallest footprint of any
edition of SQL Server 2000 and is thus an ideal embedded or offline data store.

SQL Server 2000 Windows CE Edition. This edition is the version of SQL
Server 2000 for devices and appliances running Windows CE. This edition is
programmatcally compatible with the other editions of SQL Server 2000, so

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

developers can leverage their existing skills and applications to extend the power of a
relational data store to solutions running on new classes of devices.

Q-3 Components of SQL Server 2000
SQL Server 2000 Relational Database Engine :-

The SQL Server 2000 relational database engine is a modern, highly scalable
engine for storing data. The database engine stores data in tables. Each table represents
some object class that is of interest to the organization, such as vehicles,employees, or
customers. The table has columns that each represent an attribute of the object
modeled by the table (such as weight, name, or cost) and rows that each represent a
single occurrence of the type of object modeled by the table (such as the car with
license plate number ABC-123 or the employee with ID 123456). An application
submits a SQL statement to the database engine, which returns the result to the
application in the form of a tabular result set. An Internet application submits either a
SQL statement or an XPath query to the database engine, which returns the result as an
XML document. The relational database engine provides support for the common
Microsoft data access interfaces, such as ActiveX Data Objects (ADO), OLE DB, and
Open Database Connectivity (ODBC).

The relational database engine is highly scalable. The SQL Server 2000
Enterprise Edition can support groups of database servers that cooperate to form
terabyte databases that are accessed by thousands of users at the same time. The
database engine also tunes itself, dynamically acquiring resources as more users
connect to the database and then freeing the resources as the users log off. In other
words, the smaller editbns of SQL Server can be used for individuals or small
workgroups that do not have dedicated database administrators. Even large Enterprise
Edition database servers running in production are easy to administerby using the GUI
administration utilities that are part of the product.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Q-4: Explain Enterprise manager of SQL Server 2000 ?
SQL Server Enterprise Manager

SQL Server Enterprise Manager is the primary administrative tool for SQL
Server 2000 and provides a Microsoft Management Console (MMC)-compliant user
interface that helps you to perform a variety of administrative tasks:

Defining groups of servers running SQL Server
Registering individual servers in a group
Configuring all SQL Serveroptions for each registered server
Creating and administering all SQL Server databases, objects, logins, users, and

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

permissbns in each registered server
Defining and executing all SQL Server administrative tasks on each registered
server
Designing and testing SQL statements, batches, and scripts interactively by
invoking SQL Query Analyzer
Invoking the various wizards defined for SQL Server MMC is a tool that
presents a common interface for managing different server applications in a
Microsoft Windows network. Server applications include a component called a
snap-in that presents MMC users with a user interface for managing the server
application. SQL Server Enterprise Manager is the Microsoft SQL Server 2000
MMC snap-in.

Q-5 Discuss SQL query analyzer with its all feature.
SQL Query Analyzer is a graphical user interface (GUI) that enables you to

design, test, and execute Transact-SQL statements, stored procedures, batches, and
scripts interactively. You can run SQL Query Analyzer from inside SQL Enterprise
Manager or run it directly from the Start menu. You can also launch SQL Query
Analyzer from the command prompt by executing the isqlw utility. (The isqlw utility is
discussed in more detail later in this lesson.)

Q-6 Explain Database Architecture of SQL Server 2000 ?
Database Architecture

SQL Server 2000 data is stored in databases. The data in a database is
organized into the bgical components that are visible to users, while the database itself
is physically implemented as Iwo or more files on disk.

When using a database, you work primarily with the logical components (such
as tables, views, procedures, and users). The physical implementation of files is largely
transparent. Typically, only the database administrator needs to work with the
physical implementation. Figure 1.2 illustrates the difference between the user
view and the physical implementation of a database.

Each instance of SQL Server has four system databases (master, tempdb, msdb,
and model) and one or more user databases. Some organizations have only one user
database that contains all of their data; some organizations have different databases for
each group in their organizatbn. They might also have a database used by a single
application. For example, an organization could have one database for sales, one for
payroll, one for a document management application, and so on. Some applications
use only one database; other applications might access several databases. Figure 1.3
shows the SQL Server system databases and several user databases.

You do not need to run multiple copies of the SQL Server database engine in
order for multiple users to access the databases on a server. An instance of the SQL
Server Standard Edition or Enterprise Edition is capable of handling thousands of
users who are working in multiple databases at the same time. Each instance of SQL
Server makes all databases in the instance available to all users who connect to the
instance (subject to the defined security permissions)

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

If you connect to an instance of SQL Server, your connection is associated with
a particular database on the server. This database is called the current database. You
are usually connected to a database defined as your default database by the system
administrator, although you can use connection options in the database APIs to specify
another database. You can switch from one database to another by using either the

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Transact-SQL USE <database_name> statement or by using an API function that
changes your current database context

SQL Server 2000 enables you to detach a database from an instance of SQL
Server, then reattach it to another instance or even attach the database back to the same
instance. If you have a SQL Server database file, you can tell SQL Server when you
connect to attach that database file using a specifb database name.

Q-7 Write a note on Database Objects.
Database Objects

The data in a SQL Server 2000 database is organized into several different
objects, which users see when they connect to the database. The following table
provides a brief description of the main objects in a database. These objects are
discussed in more detail in subsequent chapters.

Object Description
Table A two dimensional object consisting of rows and columns that is used to

store data a relational database. Each table stores information about one
of the types of objects modeled by the database. For example and
education database might have one table for teachers a second for
students and a third for classes.

Data type An attribute that specifies what type of information can be stored in a
column, parameter or variable SQL server provides system-supplied data
types: you can also create user-defined data types.

View A database object that can be referenced the same way as a table in SQL
statements. Views are defined by using SELECT statement and are
analogous to an object that contains the result set of this statement.

S t o r e d
procedure

A precompiled collection of Transact-SQL statements stored under a
name and processed as a unit. SQL Server supplies stored procedures for
managing SQL Server and for displaying information about data bases
and users. SQL Server applied stored procedures are called System
Stored Procedures.

Function A piece of code that operates as a single logical unit. A function is called
by name, accepts optional input parameters, and returns a status and
optional output parameters. Many programming languages support
functions, including C, Visual Basic and Transact-SQL. Transact-SQL
supplies built-in-functions that cannot be modified and supports
user-defined functions that users can create and modify.

Index In a relational database, a database object that provides fast access to data
in the rows of a table based on key values. Indexes can also enforce
uniqueness on the rows in a table. SQL Server supports clustered and
non-clustered indexes. The primary key of a table is automatically
indexed. In full-text search, a full text index stores information about
significant world and their location within a given column.

Constraint A property assigned to a table column that prevents certain types of
invalid data values from being placed in the column. For example, a

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

UNIQUE or PRIMARY KEY constraint prevents you from inserting a
value that is duplicate of an existing a CHECK constraint prevents you
from inserting a value that does not match a search condition and NOT
NULL prevents empty values.

Rule A database object that is bound to columns or use-defined data types and
specifies which data values are acceptable in a column. CHECK
constraints provide the same function ability and are preferred because
they are in the SQL-92 standard.

Default A data value, option setting, collation, or name assigned automatically by
the system if a user does not specify the value, setting, collation, or name
also known as an action that is taken automatically at certain events if a
user has not specified the action to take.

Trigger A stored procedure that is executed when data in a specified table is
modified. Triggers are often created to enforce referential integrity or
consistency among logically related data in different tables.

Q-8 Explain Database Physical Architecture of SQL?
Physical Database Architecture

This section describes the way in which SQL Server 2000 files and databases
are oiganized. The organization of SQL Server 2000 and SQL Server 7.0 is different
from the organization of data in SQL Server 6.5 or earlier.
Pages and Extents

The fundamental unit of data storage in SQL Server is the page. In SQL Server
2000, the page size is 8 kilobytes (KB). In other words, SQL Server 2000 databases
contain 128 pages per mega byte (MB).

The start of each page is a 96-byte header used to store system
information, such as the type of page, the amount of free space on the page, and the
object ID of the object owning the page.

Data pages contain all of the data in data rows (except text, ntext, and image
data, which are stored in separate pages). Data rows are placed serially on the page
(starting immediately after the header). A row offset table starts at the end of the page.
The row offset table contains one entry for each row on the page, and each entry
records hew far the first byte of the row is from the start of the page. The entries in the
row offset table are in reverse sequence from the sequence of the rows on the page, as
shown in Figure 1.4.

Extents are the basic unit in which space is allocated to tables and indexes. An
extent is eight contiguous pages, or 64 KB. In other words, SQL Server 2000
databases have 16 extents per megabyte.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Q-9 Explain Relational database architecture in detail.
The server components of SQL Server 2000 receive SQL statements from

clients and process those SQL statements. Figure 1.6 shows the major components
involved with processing a SQL statement that is received from a SQL Server client.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Tabular Data Stream
SQL statements are sent from clients by using an application-level protocol

specific to SQL Server, called Tabular Data Stream (TDS). SQL Server 2000 accepts
the following versions of TDS:

TDS 8.0, sent by clients who are running versions of the SQL Server client
Components from SQL Server 2000. TDS 8.0 clients support all the features of SQL
Server 2000. TDS 7.0, sent by clients who are running versions of the SQL Server
client components from SQL Server version 7.0. TDS 7.0 clients do not support
features introduced in SQL Server 2000, and the server sometimes has to adjust the
data that it sends back to those clients. TDS 4.2, sent by clients who are running SQL
Server client components from SQL Server 6.5, 6.0, and 4.21a. TDS 4.2 clients do not
support features introduced in either SQL Server 2000 or SQL Server 7.0, and the
server sometimes has to adjust the data that it sends back to those clients.

Server Net-Libraries
TDS packets are built by the Microsoft OLE DB Provider for SQL Server, the

SQL Server Open Database Connectivity (ODBC) driver, or the DB-Library dynamic
link library (DLL). The TDS packets are then passed to a SQL Server client Net-
Library, which encapsulates them into network protocol packets. On the server, the
network protocol packets are received by a server Net-Library that extracts the TDS
packets and passes them to the relational database engine. This process is reversed
when results are returned to the client. Each server can be listening simultaneously on
several network protocols and will be running one server Net-Library for each
protocol on which it is listening.

Relational Database Engine
The database server processes all requests passed to it from the server

Net-Libraries. The server then compiles all the SQL statements into execution plans
and uses the plans to access the requested data and build the result set that is returned
to the client. The relational database engine of SQL Server 2000 has two main parts:
the relational engine and the storage engine. One of the most important architectural
changes made in SQL Server 7.0 (and carried over to SQL Server 2000) was to strictly
separate the relational and storage engine components within the server and to have
them use the OLE DB API to communicate with each other, as shown in Figure 1.7.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Q-10 SQL Query Analyze
SQL Query Analyzer is a graphical user interface (GUI) that enables you to

design,test, and execute Transact-SQL statements, stored procedures, batches, and
scripts interactively. You can run SQL Query Analyzer from inside SQL Enterprise
Manager or run it directly from the Start menu. You can also launch SQL Query
Analyzer from the command prompt by executing the isqlw utility. (The isqlw utility is
discussed in more detail later in this lesson.)

The functionality within SQL Query Analyzer can be described in terms of the
interface layout. SQL Query Analyzer includes a number of windows, dialog boxes,
and wizards that help you to perform the tasks necessary to manage SQL Server
databases and the data stored within those databases. This section discusses many of
these interface objects and the functions that can be performed when you access them.
For more details about any of the objects that are discussed here or any objects within
the interface, refer to SQL Server Books Online.

When you launch SQL Query Analyzer, the Connect To SQL Server dialog box
appears. You must specify which instance of SQL Server that you want to access and
which type of authenticating to use when connecting to the database. Once you have
entered the appropriate information in the Connect To SQL Server dialog box and then
clicked OK, SQL Query Analyzer appears and displays the Query window and the
Object Browser window, as shown in Figure 2.1.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Query Window
The Query window is divided into two panes: The Editor pane and the Resul ts

pane. When you first open SQL Query Analyzer, only the Editor pane appears, as
shown in Figure 2.1. The Results pane appears automatically when you run a
Transact-SQL query. You can also open and close the Results pane manually by
clicking the Show Results Pane button on the toolbar.

You can customize the window and control the behavior of the Editor pane and
the Result pane. The Options dialog box, which you can access from the Tools menu
.enables you to control the box and behavior of the Query window. In addition, you
can specify which fonts are used for text in the window and you can change the
relative size of the Editor pane and the Results pane by dragging the split bar up and
down. You can also scroll through the panes (up and down or left and right) as
necessary.

Editor Pane :-
The Editor pane is a text-editing window used to enter and execute Transact-SQL
statements. You can use one of the following methods to enter code in the Editor
pane:

Type SQL statements directly in the Editor pane.
Open a saved SQL script. The contents are displayed in the Editor pane .where
they can be edited.
Open a template file. The contents are displayed in frie Editor pane, where they

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

can be edited.
Use the scripting features of Object Browser to copy SQL statements for the
selected database object into the Editor pane.

The Editor pane in SQL Query Analyzer provides various tools to help you create
and edit Transact-SQL statements, including the standard editing commands
Undo,Cut, Copy, Paste, and Select All. You can also find and replace text, move the
input cursor to a particular line, insert and remove indentafon, force case, and insert
and remove comment marks.
In additbn, you can view Transact-SQL reference topics at SQL Server Books Online
and copy the syntax example from the reference into the Editor pane, in order to help
create a Transact-SQL statement. You can also save query definitions and other SQL
scripts for reuse, and you can create templates (which are boilerplate scripts for
creating objects in a database).

Color Coding in Query Analyzer :-
The code entered in the Editor pane is colored by category. The following
table lists the default cobrs and what they indicate:

Color Category
Red Character string
Dark red Stored procedure
Gieen System table
Dark green Comment
Magenta System function
Blue Keyword
Gray Operator

You should use the color coding as a guide to help eliminate errors in your
Transact-SQL statements. For example, if you type a keyword and it is not displayed
in blue (assuming that you retained the default settings), the keyword might be
misspelled or incorrect. Or, if too much of your code is displayed in red, you might
have omitted the closing quotation mark fora character string.

Executing Transact-SQL Statements :-
You can either execute a complete script or only selected SQL statements in

SQL Query Analyzer:
Execute a complete script bycreating or opening the scriptin the Editor pane
and then pressing F5.
Execute only selected SQL statements by highlighting the lines of code in the
Editor pane and then pressing F5.

When executing a stored procedure in the Editor pane, enter the statement to
execute the stored procedure and then press F5. If the statement that executes the
procedure is the first in the batch, you can omit the EXECUTE (or EXEC)statement;
otherwise, EXECUTE is required.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Results Pane
When you execute a Transact-SQL statement, the query output (result set) is

displayed in the Results pane. The Results pane can include a variety of tabs. The
options that you select in the interface determine which tabs are displayed. By default,
only the Grids tab, which is the active tab, and the Messages tab aie displayed.
Grids Tab :-
The Grids tab displays the result set in a grid format, as shown in Figure 2.2. The grid
format is displayed much like a table and enables you to select individual cells
.columns, or rows from the result set.

Figure 2.2. Grids tab displaying the result set generated by the executing

Transact-SQL statement.
The Grids tab is always accompanied by the Messages tab, which displays

messages relative to the specific query.

Results Tab
The Results tab, like the Grids tab, displays the resul tset generated by

executing a Transact-SQL statement. In the Results tab, however, the result set is
displayed as text (refer to Figure 2.3), rather than in a grid format.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Figure 2.4. Execution Plan tab displaying a graphical representation of the executed
Transact-SQL statement.

Trace Tab
The Trace tab, like the Execution Plan tab, can assist you with analyzing your

queries. The Trace tab displays servertrace information about the event class, subclass,
integer data, text data, database D, duration, start time, reads and writes, and Central
Processing Unit (CPU) usage, as shown in Figure 2.5. The Trace tab provides
information that you can use to determine the server-side impact of a query.

Figure 2.5. Trace tab displaying servertrace information about the executed
Transact-SQL statement.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

By default, the Trace tab is not displayed in the Results pane. To display the
Trace tab, select the Execute Mode button on the toolbar, then select Show Server
Trace. The next time you execute a query, the Trace tab will be available, and it will
show the servertrace information. The tab will be available until you deselect the
Show Server Trace option or until you close SQL Query Analyzer.

Messages Tab
The Messages tab displays messages about the Transact-SQL statement that

you executed (or that you tried to execute). If the query ran successfully, the message
will include the number of rows returned, as shown in Figure 2.7, or it will state that
the command has completed successfully- If the query did not run successfully,the
Messages tab will contain an error message identifying why the query attempt was
unsuccessful.

Figure 2.7. The Messages tab displaying a message about the executed Transact-SQL
statement.

The Messages tab is available in the Results pane only if the Grids tab is
displayed. If the Results tab is displayed, messages appear in that tab.

Q-11 Explain Transact-SQL Statements ?
Transact-SQL Statements

A Transact-SQL statement is a set of code that performs some action on
database objects or on data in a database. SQL Server supports three types of
Transact-SQL statements: DDL, DCL, and DML.
Data Definition Language

Data definition language, which b usually part of a database management
system, is used to define and manage all attributes and properties of a database,
including row layouts, column definitions, key columns, file bcatbns, and storage

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

strategy.
A DDL statement supports the definitbn or declaration of database objects such

as databases, tables, and views. The Transact-SQL DDL used to manage objects is
based on SQL-92 DDL statements (with extensions). For each object
class, there are usually CREATE, ALTER, and DROP statements (for example,
CREATE TABLE, ALTER TABLE, and DROP TABLE).
Most DDL statements take the following form:
| CREATE object_name
| ALTER object_name
| DROP object_name

The following three examples illustrate how to use the Transact-SQL CREATE
keyword to create, alter, and drop tables. CREATE is not limited only to table
objects, however.

CREATE TABLE
The CREATE TABLE statement creates a table in an existing database. The

following statement will create a table named Importers in the Northwind database.
The table will include three columns: CompanylD, CompanyName, and Contact.
USE Northwind
CREATE TABLE Importers
(
CompanylD int NOT NULL,
CompanyName varchar(40) NOT NULL,
Contact varchar(40) NOT NULL
)

ALTER TABLE
The ALTER TABLE statement enables you to modify a table definition by

altering, adding, or dropping columns and constraints or by disabling or enabling
constraints and triggers. The following statement will alter the hi porters table in the
Northwind database by adding a column named ContactTitle to the table.

USE Northwind
ALTER TABLE Importers
ADD ContactTitle varchar(20) NULL

DROP TABLE
The DROP TABLE statement removes a table definition and all data, indexes,
triggers, constraints, and permission specifications for that table. Any view or stored
procedure that references the dropped table must be explicitly dropped by using the
DROP VIEW or DROP PROCEDURE statement. The following statement drops the
Importers table from the Northwind database.

USE Northwind
DROP TABLE Importers

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Data Control Language
Data control language is used to control permissions on database objects.

Permissions are controlled by using the SQL-92 GRANT and REVOKE statements
and the Transact-SQL DENY statement.

GRANT
The GRANT statement creates an entry in the security system that enables a user in
the current database to work with data in that database or to execute specific
Transact-SQL statements. The following statement grants the Public role SELECT
permission on the Customers table in the Northwind database:
USE Northwind
GRANT SELECT
ON Customers
TO PUBLIC

REVOKE
The REVOKE statement removes a previously granted or denied permission

from a user in the current database. The following statement revokes the SELECT
permissbn from the Public role for the Customers table in the Northwind database:
USE Northwind
REVOKE SELECT
ON Customers TO
PUBLIC

DENY
The DENY statement creates an entry in the security system that denies a

permission from a security account in the current database and prevents the security
account from inheriting the permission through its group or role memberships.

USE Northwind
DENY SELECT
ON Customers
TO PUBLIC

Data Manipulation Language
Data manipulation language is used to select, insert, update, and delete data in

the objects defined with DDL.

SELECT
The SELECT statement retrieves rows from the database and enables the

selection of one or many rows or columns from one or many tables. The folbwing
statement retrieves the CustomerlD, CompanyName, and ContactName data for
companies who have a CustomerlD value equal to alfki oranatr. The result set is

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

ordered according to the ContactName value:

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

USE Northwind
SELECT CustomerD, CompanyName, ContactName
FROM Customers
WHERE (CustomeriD = 'alfkf OR CustomerD = 'anat/)
ORDER BY ContactName

INSERT
An INSERT statement adds a new row to a table or a view. The following

statement adds a row to the Territories table in the Northwind database. The
TerritorylD value for the new row is 98101; trie TerritoryDescription value is Seattle;
and the RegbnlD value is 2.

USE Northwind INSERT
INTO Territories VALUES
(98101,'Seattle1, 2)
Note The INTO keyword is an optbnal keyword that can be used between INSERT
and the target table. Use the INTO keyword for code clarity.

UPDATE
The UPDATE statement changes data in a table. The following statement

updates the row in the Territories table (in the Northwind database) whose TerritorylD
value is 98101. The Territory Description value will be changed to Downtown Seattle.

USE Northwind
UPDATE Territories
SET TerritoryDescription = 'Downtown Seattle'
WHERE TerritorylD = 98101

DELETE
The DELETE statement removes rows from a table. The following statement

removes the row from the Territories table (from the Northwind database)whose
TerritorylD value is 98101.

USE Northwind
DELETE FROM Territories
WHERE TerritorylD = 98101

Q-12 Discuss different type of function with a reference
of

sql server 2000.

Functions
A function encapsulates frequently performed logic in a subroutine made up of

one or more Transact-SQL statements. Any code that must perform the logic
incorporated in a function can call the function rather than having to repeat all of the

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

function logic. SQL Server2000 supports two types of functions:
Built-in functions. These functions operate as defined in Transact-SQL and

cannot be modified. The functions can be referenced only in Transact-SQL statements.
User-defined functions. These functions enable you to define yourown

Transact-SQL functions by using the CREATE FUNCTION statement.

Built-in Functions
The Transact-SQL programming language contains three types of

built-in functions: rowset, aggregate, and scalar.

Rowset Functions
Rowset functions can be used like table references in a Transact-SQL

statement. These functions return an object that can be used in place of a table
reference In a Transact-SQL statement. For example, the OPENQUERY function is a
rowset function that executes the specified pass-through query on the given linked
server.which is an OLE DB data source. The OPENQUERY function can be
referenced in the FROM clause of a query as though it were a table name. All rowset
functions are non-deterministic; that is, they do not return the same result every time
they are called with a specific set of input values. Function determinism is discussed in
more detail later in this section.

Aggregate Functions
Aggregate functions operate on a collection of values but return a single,

summarizing value. For example, the AVG function is an aggregate function that
returns the average of the values in a group.

Aggregate functions are allowed as expressions only in the following statement:
The select list of a SELECT statement (eithera subquery or an outer query) A
COMPUTE or COMPUTE BY clause A HAVING clause

With the exception of COUNT, aggregate functions ignore null values.
Aggregate functions are often used with the GROUP BY clause of the SELECT
statement. All aggregate functions are deterministic; they return the same value any
time they are called with a given set of input values.

Scalar Functions
Scalar functions operate on a single value and then return a single value. Scalar

functions can be used wherever an expression is valid. Scalar functions are divided
into categories, as described in the following table:

Scalar Category Description
C o n f i g u r a t i o n
functions

Return information about the current configuration

Cursor functions Return information about cursors
Date and time
functions

Perform an operation on a date and a time input value and

return either a string, numeric, or date and lime value

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

M a t h e m a t i c a l
functions

Perform a calculation based on input values provided as

parameters to the function and return a numeric value
Metadata functions Return information about the database and database objects
Security functions Return information about users and roles
String functions Perform an operation on a string [chat or varchar) input

value and return a itring or numeric value
System functions Perform operations and return information about values,

objects, and settings in SQ! Server
System statistical
Functions

Return statistical information about the system

Text and image
functions

Perform an operation on a text or image input value or column
and return information about the value

Each category of scalar functions includes its own set of functions. For
example, the MONTH function, which is included in the date and time category, is a
scalar function that returns an integer representing the month part of a specified date.

Q-14 Discuss processing step of SQL select Statements ?
Processing a SELECT Statement

The steps used to process a single SELECT statement referencing only local
base tables (no views or remote tables) illustrate the basic process of executing most
Transact-SQL statements. SQL Server uses the following steps to process a single
SELECT statement:
1. The parser scans the SELECT statement and breaks it into logical units, such as

keywords, expressions, operators, and identifiers.
2. A query tree, sometimes called a sequence tree, is built by describing the

logical steps needed to transform the source data into the format needed by the
result set.

3. The query optimizer analyzes all of the ways in which the source tables can be
accessed and selects the series of steps that will return the result fastest while
consuming the fewest resources. The query tree is updated to record this exact
series of steps, and the final, optimized version of the query tree is called the
execution plan.

4. The relational engine begins executing the execution plan. As steps that need
data from the base tables are processed, the relational engine uses OLE DB to
request the storage engine to pass up data from the row sets that are requested
from the relational engine.

5. The relational engine processes the data returned from the storage engine into
the format defined for the result set and returns the result set to the client.

Q-15 Discuss the feature of well designed database
In relational database design theory, normalization rules identify certain

attributes that must be present or absent in a well-designed database. These rules can

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

become quite complicated and go well beyond the scope of this book. There are a few
rules that can help you achieve a sound database design, however. A table should have
an identifier, it should store data for only a single type of entity, it should avoid
nullable columns, and it should not have repeating values or columns
Q-16 Explain Entity Relationship with Suitable Example ?

Entity Relationships
In a relational database, relationships help to prevent redundant data. A

relationship works by matching data in key columns—usually columns that have the
same name in both tables. In most cases, the relationship matches the primary key
from one table, which provides a unique identifier for each row with an entry in the
foreign key in the other table. Primary keys and foreign keys are discussed in more
detail in Chapter 5, "Implementing Data Integrity." There are three types of
relationships between tables: one-to-one, one-to-many, and many-to-many. The type of
relationship depends on how the related columns are defined.

One-to-One Relationships
In a one-to-one relationship, a row in table A can have no more than one

matching row in table B (and vice versa). A one-to-one relationship is created if both
of the related columns are primary keys or have unique constraints. This type of
relationship is not common, however, because information related in this way would
usually be in one table.

One-to-Many Relationships
A one-to-many relationship is the most common type of relationship. In this

type of relationship, a row in table A can have many matching rows in table B, but a
row in table B can have only one matching row in table A. For example, the Publishers
and Titles tables mentioned previously have a one-to-many relationship. Each
publisher produces many titles, but each title comes from only one publisher. A one-to
many relationship is created if only one of the related columns is a primary key or has
a unique constraint.

Many-to-Many Relationships
In a many-to-many relationship, a row in table A can have many matching rows

in table B (and vice versa). You create such a relationship by defining a third table,
called a junction table, whose primary key consists of the foreign keys from both table
A and table B. In Figures 3-6 and 3-7, you saw how the author information could be
separated into another table. The Books table and the Authors table have a
many-to-many relationship. Each of these tables has a one-to-many relationship with
the BookAuthor table, which serves as the junctbr table between the two primary
tables

Q-17 What is a file? Discuss different kind of file group. Files
and Filegroups
To map a database, SQL Server 2000 uses a set of operating system files. / data

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

and objects in the database, such as tables, stored procedures, trigger: and views, are
stored within the following types of operating system files:

Primary. This file contains the startup information for the database and is used
to store data. Every database has one primary data file.

Secondary. These files hold all of the data that does notfitinto the primary data
file. If the primary file can hold allofthe data in the database, databases do not need to
have secondary data files. Some databases might be large enough to need multiple
secondary data files or to use secondary files on separate disk drives to spread data
across multiple disks or to improve database performance.

Transaction Log. These files hold the log information used to recoverthe
database. There must be at least one log file for each database.A simple database can
be created with one primary file that contains all data and objects and a log file
thatcontains the transaction log information. Alternatively, a more complex database
can be created with one primary file and five secondary files. The data and objects
within the database spread across all six files, and four additional bg files contain the
transaction bg informatbn. Filegroups group files togetherfor administrative and data
allocation/placement purposes. For example, three files (Datai.ndf, Data2.ndf, and
Data3.ndf) can be created on three disk drives and assigned to the filegroup fgroupi. A
table can then be created specifically on the filegroup fgroupi. Queries for data from
the table will be spreac across the three disks, thereby improving performance. The
same performance improvement can be accomplished with a single file created on a
redundant array of independent disks (RAID) stripe set Files and filegroups, however,
help to easily add new files to new disks . Additionally, if your database exceeds the
maximum size fora single Windows NT file, you can use secondary data files to grow
your database further.

Rules for Designing Files and Filegroups When designing files and filegroups, you
should adhere to the following rules: A file or filegroup cannot be used by more than
one database. Forexample, the files sales.mdf and sales .ndf, which contain data and
objecte from the sales database, cannot be used by any other database.

A file can be a member of only one filegroup. Data and transaction bg
information cannot be part of the same file or filegroup. Transaction bg files are never
part of a filegroup. Default Filegroups

A database comprises a primary filegroup and any user-defined file groups. The
filegroup that contains the primary file is the primary filegroup. When a database is
created, the primary filegroup contains the primary data file and any other files that are
not put into another filegroup. All system tables are albcated in the primary filegroup.
If the primary filegroup runs out of space, no new catabg information can be added to
the system tables. The primary filegroup is filled only if autogrow is turned off or if all
of the disks that are holding the files in the primary filegroup run out of space. If this
situation happens, either turn autogrow back on or move other files offthediste to free
more space. User-defined filegroups are any filegroups that are specifically created by
the user when he or she is first creating or later altering the database. If a user-defined
filegroup fills up, only the users' tables specifically allocated to that filegroup would

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

be affected. At any time, exactly one filegroup is designated as the default filegroup.
When objects are created in the database without specifying to which filegroup they
belong, they are assigned to the default filegroup. The default filegroup must be large
enough to hold any objects not allocated to a user-defined filegroup. Initially, the
primary filegroup is the default filegroup. The default filegroup can be changed by
using the ALTER DATABASE statement. When you change the default filegroup, any
objects that do not have a filegroup specified when they are created are allocated to the
data files in the new default filegroup. Allocation for the system objects and tables,
however, remains within the primary filegroup, not in the new default filegroup.

Changing the default filegroup prevents user objects that are not specifically
created on a user-defined filegroup from competing with the system objecte and tables
fordata space.

Recommendations
When implementing a database, you should try to adhere to the following
guidelines for using files and filegroups:

Most databases will work well with a single data file and a single transaction
log file.
If you use multiple files, create a second filegroup for the additional files and
make that filegroup the default filegroup. This way, the primary file will
contain only system tables and objects.
To maximize performance, you can create files or filegroups on as many
different available local physical disks as possible and place objecte that
compete heavily for space in different filegroups.
Use filegroups to enable the placement of objects on specific physical disks.
Place different tables used in the same join queries in different filegroups. This
procedure will improve performance due to parallel disk input/output (I/O)
searching forjoined data.
Place heavily accessed tables and the non-clustered indexes belonging to those
tables on different filegroups. This procedure will improve performance due to
parallel I/O if the files are located on different physical disks.
Do not place the transaction log file(s) on the same physical disk with the other
files and filegroups.

Transaction Logs
A database in SQL Server 2000 has at least one data file and one transaction

log file. Data and transaction log information is never mixed on the same file, and
individual files are used by only one database. SQL Server uses the transaction log of
each database to recover transactions. The transaction log is a serial record of all
modifications that have occurred in the database as well as the transactions that
performed the modifications. The transaction log records the start of each transaction
and records the changes to the data. This log has enough information to undo the
modifications (if necessary later) made during each transaction. For some large
operations, such as CREATE INDEX, the transaction bg instead records the feet that
the operation took place. The log grows continuously as bgged operations occur in the

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

database. The transaction log records the allocation and dealbcatbn of pages and the
commit or rollback of each transaction. This feature enables SQL Serverto either apply
(roll forward) or back out (roll back) each transaction in the following ways:

A transaction is rolled forward when you apply a transaction bg. SQL Server
copies the afterimage of every modification to the database or reruns statements such
as CREATE INDEX. These actions are applied in the same sequence
in which they originally occurred. At the end of this process, the database is in the
same state that it was in atthe time the transaction log was backed up.

A transaction is rolled back when you back out an incomplete transactbn. SQL
Server copies the before images of all modifications to the database since the BEGIN
TRANSACTION. If it encounters transaction log records indicating that a CREATE
INDEX was performed, it performs operations that logically reverse the statement.
These before images and CREATE INDEX reversals are applied in the reverse of their
original sequence. At a checkpoint, SQL Server ensures that all transaction log records
and database pages that were modified are written to disk During each database's
recovery process, which occurs when SQL Server is restarted, a transaction needs to
be rolled forward only if it is not known whether all the transaction's data
modifications were actually written from the SQL Server buffer cache to disk.
Because a checkpoint forces all modified pages to disk, it represents the point at which
the startup recovery must start rolling forward transactors. Because all pages modified
 before the checkpoint are guaranteed to be on disk, there is no need to roll forward
anything done before the checkpoint. Transaction log backups enable you to recover
the database to a specific point in time (for example, prior to entering unwanted data)
or to the point of failure. Transaction log backups should be a consideration in your
media-recovery strategy.

Q-18 What is Data Type ? Explain System Define, User
Define, Column level Data Type ?
A data type is an attribute that specifies what type of data can be stored in a

column, parameter, or variable. SQL Server provides a set of system-supplied data
types. In addition, you can create user-defined data types that are based on the system
supplied data types. This lesson describes system-supplied data types and user-defined
data types, and it explains how to identify which data type you should use when
defining a column.

System-Supplied Data Types
In SQL Server, each column has a related data type, which is an attribute that

specifies the type of data (integer, character, monetary, and so on) that the object can
hold. Certain objects other than columns also have an associated data type. The
following objects have data types:
| Columns in tables and views
| Parameters in stored procedures
| Variables
| Transact-SQL functions that return one or more data values of a specific data
type

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

| Stored procedures that have a return code (which always has an integer data
type)

Assigning a data type to each column is one of the first steps to take toward
designing a table. SQL Server supplies a set of system data types that define all of the
types of data that you can use with SQL Server. You can use data types to enforce data
integrity, because the data that is entered or changed must conform to the type
specified in the original CREATE TABLE statement. For example, you cannot store
someone's last name in a column defined with the datetime data type because a date
time column accepts only valid dates. Assigning a data type to an object defines four
attributes of the object

The kind of data contained by the object. For example, the data might be
character, integer, or binary.

The length of the stored value or its size. The lengths of image, binary, and
varbinary data types are defined in bytes. The length of any of the numeric date types
is the number of bytes required to hold the number of digits allowed for that data type.
The lengths of character string and Unicode data types are defined in characters.

The precision of the number (numeric data types only). The precision is the
number of digits that the number can contain. For example, a smallint object can hold
a maximum of five digits; therefore, it has a precision of five.

The scale of the number (numeric data types only). The scale is the number of
digits that can be stored to the right of the decimal point For example, an int object
cannot accept a decimal point and has a scale of zero. A money object can have a
maximum of four digits to the right of the decimal point and has a scale of four. The
following table provides descriptions of the categories of date types that SQL Server
supports and descriptions of the base data types that each category contains:

Category Description Base Data
Type Description

Binary Binary dam stores strings
of birs. The data consists of
hexa-decimal numbers. For
example. the decimal
number 245 is
hexadecimal F5.

Binary

Data must have the same tixed
length
(up to 8 KB).

varbmmy
Data can vary in the number of
hexa-decimal digits (up to S KB),

image Data can be variable length and
exceed 8KB.

Character Character data consists of
any combination of letters,
symbols.and numeric
characters. For
example, valid character
dataincludes the "Johu928"
and
•(0*&(%B99nhjkJ"
combinations.

char

Data must have same fixed length
(up
to 8 KB).

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

varchar

Data can vary in the number of
chai acters., but the length cannot
exceed 8 KB,

Text
Data cm be ASCII characters that
exceed 8 KB,

Date and
time

Dire and time data consists
of
valid date 01 time
combinations. There are no
separate
time and date data types for
storing only tunes or only
dates

Determine

Date data should range from
January 1.
1753 through December 31. 9999
(requires & bytes per value).

Category Description Base Data
Type

Description

smalldatetime Date data should range from
January I. 1900 through June 6.
2079 (requires 4 bytes per value).

Decimal Decimal data consists
of data that is stored to
the least significant
digit.

decimal Data can be a maximum of 38
digits all of which can be to the
right of the decimal point. The data
type stores an exact representation
of the number, there is no
approximation of the stored value.

numeric In SQL Server, the numeric data
type is equivalent to the decimal
data type.

Floating
point

Approximate numeric
(floating-point) data
consists of data pre-
served as accurately as
the biliary numbering
system can offer.

float Data is a floating-point number
from
-1.79E + 308 through 1.79E - 308.

real Data is a floating-point number
from
-3.40E + 3S through 3.40E - 38.

Integer Integer data consists of
negative
and positive whole
numbers.
such as -15. 0. 5. and
2.509

bigint Data is a number in the range from
-."63 !-ct2233"2036SM"5SO$!
through 2 63-1
(9223372036854775807). Storage
size
is 8 bytes.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Int Data is a number in the range from
-2.147.4S3.64S through
2.147.483.647 only (requires 4
bytes of storage per
value).

smallint Data is a number in the range from
-32.76S through 32.767 only
(requires
2 bytes of storage per value).

tinyint Data is a number in the range from
zero through 255 only irequires I
byte of storage per value).

Monetary Monetary data
represents
positive or negative
amounts
ot money.

money Data is a monetary value in the
range from
-922.337.203.685.4".5S0S "
through+922,337,203,685,477.5807
(requires 8 bytes to store value).

smallmoney Data is a monetary value in die
range of -214,748.3648 through
214,748.3647 (requires 4 bytes to
store a value).

Category Description Base Data
Type

Description

Special Special data consists of
data that does not fit in
any of the other
categories of data.

Bit Data consists of either a 1 or a
0. Use
the bit data type when
representing
TRUE or FALSE or YES or
NO.

cursor This data type is used for
variables or stored procedure
OUTPUT parameters
that contain a reference to a
cursor. Any variables created
with the cursor data type are
nullable.

timestamp This data type is used to
indicate the sequence of SQL
Server activity on a row and is
represented as an increasing
number in a binary format.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

tmiqueideiirifier Data consists of a 16-byte
hexadecimal number indicating
a globally unique identifier
(GUlD) The GUID is useful
when a row must be unique
among
many other rows.

SQL_variant Tin- data type stores values of
various SQL
Server—supported data types
except texr. ntext. timestamp,
image. and sql variant.

Table This data type is used to store a
result set for later processing.
The table data type can be used
only to define local variables
of type table or the return value
of a user-defined function.

Unicode Using Unicode data types.
a column can store any
character defined by the
Unicode Standard, winch
includes all of she charac-
ters defined in the various
character sets. Unicode
data types take twice as
much storage space as
non-Unicode data types.

nchar Data must have the same fixed
length
(up to 4000 Unicode
characters)

Nvarrchar Data can vary in the number of
Unicode
characters (up to 4000).

Ntext Data can exceed 4000 Unicode
characters

All data stored in SQL Server must be compatible with one of these base data
types.The cursor data type is the only base data type that cannot be assigned to a table
column. You can use this type only for variables and stored procedure parameters

Several base data types have synonyms (for example, rowversion is a synonym
for timestamp, and national character varying is a synonym for nvarchar).

User-Defined Data Types
User-defined data types are based on the system data types in SQL Server 2000.

User-defined data types can be used when several tables must store the same type of
data in a column and you must ensure that these columns have exactly the same data
type, length, and nullability. For example, a user-defined data type called postalcode
could be created based on the char date type. When you create a user-defined data

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

type, you must supply the following parameters:
| Name
| System data type upon which the new data type is based
| Nullability (whether the data type allows null values) When nullability is not explictly
defined, it will be assigned based on the ANSI null default setting forthe database or
connection.

Note : If a user-defined data type is created in the Model database, it exists in all new
user-defined databases. If the data type is created in a user-defined database, however,
the data type exists only in that user-defined database. You can create a user-defined
data type by using the sp_addtype system stored procedure or by using SQL Server
Enterprise Manager.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Column Data Types
In this exercise, you will identify the data types that you should use in your

column definitions when you create the tables forthe database that you created in
Exercise
1. The tables and columns will be based on the objects and data constraints that

you identified when you devebped your database design. You will use
system-supplied base data types for your database, rather than user-defined data
types. Each column must have a data type. To perform this exercise, you will
need paperand a pencil to write down the data type foreach column.

To review existing tables and columns and their data types
1. Open SQL Server Enterprise Manager.
2. Expand the console tree until you can view the list of objects in the Northwind

database.
3. Click the Tables node listed beneath the Northwind node. A list of tables in the

Northwind database appears in the right pane.
4. Right-click the Employees table, then click Properties. The Table Properties

-Employees dialog box appears.
5. Review the list of columns and their data types. Notice that the size of each

column is listed to the right of the data type.
6. Close the Table Properties - Employees dialog box.
7. Right-click the Orders table, then click Properties. The Table Properties -Orders

dialog box appears.
8. Review the list of columns and their data types. Close the Table Properties

-Orders dialog box
9. Open the properties for several other tables, and review the columns and data

types.

To identify the datatypes for the Authors table
1. Make a list of each column in the Authors table.
2. Refer to the data constraints that you identified for the Authors table when you

developed your database design. Which data constraints apply to the AuthorlD
column of the Authors table? At this point, you are concerned only with
identifying the data type for the AutiorlD column and determining what type of
data that column will contain. In this case, you want SQL Server to generate
this ID automatically, which means that when you define this column, you will
need to include the IDENTITY property in the definition. The IDENTITY
property can be used only with an integer or decimal data type. You will learn
more about defining this type of column in the next lesson. You decide to use
an integer data type rather than decimal, because decimal is unnecessary as an
ID. You also decide that the smallint data type is adequate to use to identify
authors. The smallint data type supports an D of up to 32,767—many
more authors than you anticipate the database ever needing to store.

3. Write down smallint next to the AuthorlD column.
4. Review the database design and the data constraints for the FirstName and

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

LastName columns. What type of data will you store in this column? Because a
name can vary in length but will not likely exceed 30 characters, you decide to
use the varchar(30)data type for each column.

5. Review the database design and the data consiraints for the YearBorn and
YearDied columns. You can assume that each column will contain only four
characters. Because date and time data types do not include a year-only data
type, you decide to use a character data type. Which data type should you use
for the YearBorn and YearDied columns?

6. Review the database design and the data constraints for the Descriptbn column.
What type of data will you store in this column? Because the description can
vary in length but will not likely exceed 200 characters, you decide to use the
varchar(200)data typeforeach column.

7. Be sure to write down the name of the correct data type next to the name of
each column in the Authors table.

To identify the column data types for tables in the BookShopDB database
1. Write down the name of each table in yourdatabase design.
2. Review the database design and the data constraints for each column in the

tables.
3. Identify the data type for each column. What is the data type for each column in

the BookShopDB tables?
4. Be certain to write down the data type next to the name of each column (or at

least record this information in some way). You wifl need this information for
later exercis es.

Q-19 Enforce a data integrity:

(A) Entity integrity
Entity integrity defines a row as a unique instance of an entity for a particular

table. Entity integrity enforces the integrity of the identifier column or the primary key
of a table (through indexes, UNIQUE constraints, PRIMARY KEY constraints, or
IDENTITY properties).

(B) Domain integrity
Domain integrity is the validity of entries for a given column. You can enforce

domain integrity by restricting the type (through data types), the format (through
CHECK constraints and rules), or the range of possible values (through
FOREIGN KEY constraints, CHECK constraints, DEFAULT definitions, NOT
NULL definitions, and rules).

(C) Referential integrity: -
Referential integrity preserves the defined relationships between tables when

records are entered or deleted. In SQL Server, referential integrity is based on
relationships between foreign keys and primary keys or between foreign keys and
unique keys (through FOREIGN KEY and CHECK constraints). Referential
integrity ensures that key values are consistent across tables. Such consistency requires

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

that there be no references to non-existent values and that, if a key value changes, afl
references to itchange consistently throughout the database. When you enforce
referential integrity, SQL Server prevents users from doing any of the following:

Adding records to a related table if there is no associated record in the primary
table
Changing values in a primary table that result in orphaned records in a related
table
Deleting records from a primary table if there are related records in the foreign
table

For example, with the Sales and Titles tables in the Pubs database, referential
integrity is based on the relationship between the foreign key (tit)e_id) in the Sales
table and the primary key (title_id) in the Titles table. Figure given below.

User-Defined Integrity
User-defined integrity enables you to define specific business rules that do not

fall into one of the other integrity categories. All of the integrity categories support
user-defined integrity (all column-level and table-level constraints in the CREATE
TABLE statement, stored procedures, and triggers).

Q-20 Explain Integrity Constant ? Introduction to Integrity
Constraints
Constraints enable you to define the way SQL Server 2000 automatically

enforces the integrity of a database. Constraints define rules regarding the values
allowed in columns and are the standard mechanisms for enforcing integrity. Using
constraints b preferred to using triggers, rules, or defaults. The query optimizer also
uses constraint definitions to build high-performance query execution plans.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Constraints can be column constraints ortable constraints:
| A column constraint is specified as part of a column definition and applies only to
that column.
| A table constraint is declared independently from a column definition and can apply
to more than one column in a table. Table constraints must be used when more than
one column is included in a constraint. For example, if a table has two or more
columns in the primary key, you must use a table constraint to include both columns in
the primary key. Consider a table that records events happening in a computer in a
factory. Assume that events of several types can happen at the same time, but no two
events happening at the same time can be of the same type. This rule can be enforced
in the table by including both the type and time columns in a two-column primary key,
as shown in the following
CREATE TABLE statement:
CREATE TABLE FactoryProcess
(
EventType INT,
EventTimeDATETIME,
EventSite CHAR(50),
EventDescCHAR(1024),
CONSTRAINT event_key PRIMARY KEY (EventType, EventTime)
)
SQL Server supports four main classes of constraints: PRIMARY KEY
constraints,
UNIQUE constraints, FOREIGN KEY constraints, and CHECK constraints.

PRIMARY KEY Constraints
A table usually has a column (or combination of columns) whose values

uniquely identify each row in the table. This column (or columns) is called the primary
key of the table and enforces the entity integrity of the table. You can create a primary
key by defining a PRIMARY KEY constraint when you create or alter a table. A table
can have only one PRIMARY KEY constraint, and a column that participates in the
PRIMARY KEY constraint cannot accept null values. Because PRIMARY KEY
constraints ensure unique data, they are often defined for identity columns. When you
specify a PRIMARY KEY constraint for a table, SQL Server 2000 enforces data
uniqueness by creating a unique index for the primary key columns This index also
permits fast access to data when the primary key is used in queries. If a PRIMARY
KEY constraint is defined for more than one column, values can be duplicated within
one column—but each combination of values from all of the columns in the
PRIMARY KEY constraint definition must be unique. Figure 5.2 illustrates how the
au_id and title_id columns in the TitleAuthor table form a composite PRIMARY
KEY constraint, which ensures that the combination of aujd and titlejd is unique.

Creating PRIMARY KEY Constraints
You can create a PRIMARY KEY constraint by using one of the following

methods:

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

| Creating the constraint when the table is created (as part of the table definition)
| Adding the constraint to an existing table, provided that no other PRIMARY KEY
constraint already exists You can modify or delete a PRIMARY
CONSTRAINT once it has been created. For example, you might want the

PRIMARY KEY constraint of the table to

reference other columns, or you might want to change the column order, index name,
clustered option, or fill factor of the PRIMARY KEY constraint. You cannot change
the length of a column defined with a PRIMARY KEY constraint.

Note: To modify a PRIMARY KEY constraint by using Transact-SQL, you must first
delete the existing PRIMARY KEY constraint and then re-create it with the new
definition.

The following CREATE TABLE statement creates the Tablei table and defines
the
CoM column as the primary key:
CREATE TABLE Table 1
(
Coll INT PRIMARY KEY,
Col2VARCHAR(30)
)
You can also define the same constraint by using a table-level PRIMARY KEY
constraint: CREATE TABLE Tablei
(
Coll INT,
Col2 VARCHAR(30),
CONSTRAINT table_pk PRIMARY KEY (Coll)
)
You can use the ALTER TABLE statementto add a PRIMARY KEY constraint to
an existing table:

ALTER TABLE Table 1
ADD CONSTRAINT table_pk PRIMARY KEY (Coll)

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

When a PRIMARY KEY constraint is added to an existing column (or columns) in
the table, SQL Server 2000 checks the existing data in the columns to ensure
that it follows the rules for primary keys
| No null values
| No duplicate values

If a PRIMARY KEY constraint is added to a column that has duplicate or null
values, SQL Server returns an error and does not add the constraint You cannot add a
PRIMARY KEY constraint that violates these rules.

SQL Server automatically creates a unique index to enforce the uniqueness
requirement of the PRIMARY KEY constraint. If a clustered index does not already
exist in the table (or a non-clustered index is not explicitly specified), a unique,
clustered index is created to enforce the PRIMARY KEY constraint.

Important A PRIMARY KEY constraint cannot be deleted if it is referenced by
a FOREIGN KEY constraint in another table. The FOREIGN KEY constraint must be
deleted first. FOREIGN KEY constraints are discussed later in this lesson.

UNIQUE Constraints
You can use UNIQUE constraints to ensure that no duplicate values are entered

in specific columns that do not participate in a primary key. Although both a UNIQUE
constraint and a PRIMARY KEY constraint enforce uniqueness, you should use a
UNIQUE constraint instead of a PRIMARY KEY constraint in the following
situations:
| If a column (or combination of columns) is not the primary key. Multiple
UNIQUE constraints can be defined on a table, whereas only one PRIMARY KEY
constraint can be defined on a table.
| If a column allows null values. UNIQUE constraints can be defined for
Columns that allow null values, whereas PRIMARY KEY constraints can be defined
only on columns that do not allow null values.
A UNIQUE constraint can also be referenced by a FOREIGN KEY constraint.

Creating UNIQUE Constraints
You can create a UNIQUE constraint in the same way that you create a PRIMARY
KEY constraint:
| By creating the constraint when the table is created (as part of the table definition)
| By adding the constraint to an existing table, provided that the column or
combination of columns comprising the UNIQUE constraint contains only unique or
NULL values. A table can contain multiple UNIQUE constraints. You can use the
same Transact-SQL statements to create a UNIQUE constraint that you used to create
a PRIMARY KEY constraint. Simply replace the words PRIMARY KEY with the
word UNIQUE. As with PRIMARY KEY constraints, a UNIQUE constraint can be
modified or deleted once it has been created.

When a UNIQUE constraint is added to an existing column (or columns) in the
table, SQL Server 2000 (by default) checks the existing data in the columns to ensure
that all values, except null, are unique. If a UNIQUE constraint is added to a column
that has duplicated values, SQL Server returns an error and does not add the

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

constraint.
SQL Server automatically creates a UNIQUE index to enforce the uniqueness

requirement of the UNIQUE constraint. Therefore, if an attempt is made to insert a
duplicate row, SQL Server returns an error message saying that the UNIQUE
constraint has been violated and does not add the row to the table. Unless a clustered
index is explictly specified, a unique, non-clustered index is created by default to
enforce the UNIQUE constraint.

FOREIGN KEY Constraints
A foreign key is a column or combination of columns used to establish and

enforce a link between the data in two tables. Create a link between two tables by
adding a column (or columns) to one of the tables and defining those columns with a
FOREIGN KEY constraint. The columns will hold the primary key values from the
second table. A table can contain multiple FOREIGN KEY constraints.

For example, the Titles table in the Pubs database has a link to the Publishers
table because there is a logical relationship between books and publishers. The pub id
column in the Titles table matches the primary key column in the Publishers table, as
shown in Figure 5.3. The pub_id column in the Titles table is the foreign key to the
Publishers table.

You can create a foreign key by defining a FOREIGN KEY constraint when
you create or alter a table. In addition to a PRIMARY KEY constraint, a FOREIGN
KEY constraint can reference the columns of a UNIQUE constraint in anothertable.

A FOREIGN KEY constraint can contain null values; however, if any column
of a composite FOREIGN KEY constraint contains null values, then verification of the
FOREIGN KEY constraint will be skipped.

Note: A FOREIGN KEY constraint can reference columns in tables in the same
database or within the same table (self-referencing tables).

Although the primary purpose of a FOREIGN KEY constraint is to control the
data that can be stored in the foreign key table, it also controls changes to data in the
primary key table. For example, if the row for a publisher is deleted from the
Publishers table and the publisher's ID is used for books in the Titles table, the
relational integrity between the two tables is broken. The deleted publisher's books are
orphaned in the titles table without a link to the data in the Publishers table. A
FOREIGN KEY constraint prevents this situation. The constraint enforces referential
integrity by ensuring that changes cannot be made to data in the primary key table if
those changes invalidate the link to data in the foreign key table. If an attempt is made
to delete the row in a primary key table or to change a primary key value, the action
will fail if the deleted or changed primary key value corresponds to a value in the
FOREIGN KEY constraint of another table.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

To successfully change or delete a row in a FOREIGN KEY constraint, you
must first either delete the foreign key data in the foreign key table or change the
foreign key data in the foreign key table—thereby linking the foreign key to different
primary key data.

Creating FOREIGN KEY Constraints
You can create a FOREIGN KEY constraint by using one of the following methods:
| Creating the constraint when the table is created (as part of the table definition)
| Adding the constraint to an existing table, provided that the FOREIGN KEY
constraint is linked to an existing PRIMARY KEY constraint or a UNIQUE constraint
in another (or the same) table You can modify or delete a FOREIGN KEY constraint
once it has been created. For example, you might want the table's FOREIGN KEY
constraint to reference other columns. You cannot change the length of a column
defined with a FOREIGN KEY constraint.

Note: To modify a FOREIGN KEY constraint by using Transact-SQL.you must first
delete the existing FOREIGN KEY constraint and then re-create it with the new
definition.

The following CREATE TABLE statement creates the Tablei table and defines
the Col2 column with a FOREIGN KEY constraint that references the EmployeelD
column, which is the primary key in the Employees table:

CREATE TABLE Table 1
(
Coll INT PRIMARY KEY,
Col2 INT REFERENCES Empbyees(EmployeelD)
)
You can also define the same constraint by using a table-level FOREIGN KEY
constraint: CREATE
TABLE Table1

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

(
Col1 INT PRIMARY KEY,
Col2 INT,
CONSTRAINT col2_fk FOREIGN KEY(Col2)
REFERENCES Employees (EmployeelD)
)
You can use the ALTER TABLE statement to add a FOREIGN KEY constraint to
An existing table:

ALTER TABLE Table 1
ADD CONSTRAINT col2Jk FOREIGN KEY (Col2)
REFERENCES Employees (EmployeelD)

When a FOREIGN KEY constraint is added to an existing column (or columns)
in the table, SQL Server 2000 (by default) checks the existing data in the columns to
ensure that all values, except null values, exist in the columns of the referenced
PRIMARY KEY or UNIQUE constraint. You can prevent SQL Server from checking
the data in the column against the new constraint, however, and force it to add the new
constraint regardless of the data in the column. This optbn is useful when the existing
data already meets the new FOREIGN KEY constraint or when a business rule
requires the constraint to be enforced only from this point fon/vard. You should be
careful when adding a constraint without checking existing data, however, because
this action bypasses the controls in SQL Server that enforce the data integrity of the
table.

Disabling FOREIGN KEY Constraints
You can disable existing FOREIGN KEY constraints when performing the following
actbns:
| Executing INSERT and UPDATE statements. Disable a FOREIGN KEY constraint
during INSERT and UPDATE statements if new data will violate the constraint or if
the constraint should apply only to the data already in the database. Disabling the
constraint enables data in the table to be modified without being validated bythe
constraints
| Implementing replication processing. Disable a FOREIGN KEY constraint during
replicatbn if the constraint is specific to the source database. When a table is
replicated, the table definitbn and data are copied from the source database to a
destinatbn database. These two databases are usually (but not necessarily) on separate
servers. If the FOREiGN KEY constraints are specific to the source database but are
not disabled during replicatbn, they might unnecessarily prevent new data from being
entered in the destination database.

CHECK Constraints
CHECK constraints enforce domain integrity by limiting the values that are

accepted by a column. They are similar to FOREIGN KEY constraints in that they
control the values that are placed in a column. The difference is in how they determine
when values are valid. FOREIGN KEY constraints get the list of valid values from

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

another table, and CHECK constraints determine the valid values
from a logical expression that is not based on data in another column. For example, it
is possible to limit the range of values fora salary column by creating a CHECK
constraint that allows only data ranging from $15,000 through $100,000. This feature
prevents the entering of salaries from outside the normal salary range. You can create
a CHECK constraint with any logical (Boolean) expressbn that returns TRUE or
FALSE based on the logical operators. To allow only data that ranges from $15,000
through $100,000, the logical expression is as follows:

salary>= 15000 AND salary<= 100000

You can apply multiple CHECK constraints to a single column. The constraints
are evaluated in the order in which they are created. In addition, you can apply a single
CHECK constraint to multiple columns by creating it at the table level. For example, a
multiple-column CHECK constraint can be used to confirm that any row with a
country column value of USA also has a two-character value in the state column. This
feature enables multiple conditions to be checked in one place.

Creating CHECK Constraints
You can create a CHECK constraint by using one of the following methods:
| Creating the constraint when the table is created (as part of the table definition)
| Adding the constraint to an existing table
You can modify or delete CHECK constraints once they have been created. For
example, you can modify the expressbn used by the CHECK constraint on a column in
the table.

Note : To modify a CHECK constraint using Transact-SQL, you must first delete the
existing CHECK constraint and then re-create it with the new definition

The following CREATE TABLE statement creates the Table 1 table and defines the
Col2 column with a CHECK constraint that limits the column-entered values to a
range between 0 and 1000:
CREATE TABLE Tablei
(
Coll INT PRIMARY KEY,
Col2 INT
CONSTRAINT limit_amount CHECK (Col2 BETWEEN 0 AND 1000),
Col3VARCHAR(30)
)
You can also define the same constraint by using a table-level CHECK
constraint: CREATE TABLE Tablei
(
Coll INT PRIMARY KEY,
Col2 INT,
Col3 VARCHAR(30),
CONSTRAINT limit_amount CHECK (Col2 BETWEEN 0 AND 1000)

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

)

You can use the ALTER TABLE statement to add a CHECK constraint to an
existing table:

ALTER TABLE Table1 ADD CONSTRAINT !imit_amount CHECK (Col2
BETWEEN 0 AND 1000) When a CHECK constraint is added to an existing table, the
CHECK constraint can apply either to new data only or to existing data as well. By
default, the CHECK constraint applies to existing data as well as to any new data. The
option of applying the constraint to new data only is useful when the existing data
already meets the new CHECK constraint or when a business rule requires the
constraint to be enforced only from this point forward.

For example, an old constraint might require postal codes to be limited to five
digits, but a new constraint might require nine-digit postal codes. Old data with
fivedigit postal codes is still valid and will coexist with new data that contains
ninedigit postal codes. Therefore, only new data should be checked against the new
constraint.

You should be careful when adding a constraint without checking existing data,
however, because this action bypasses the controls in SQL Server 2000 thatenforce the
integrity rules forthe table.

Disabling CHECK Constraints
You can disable existing CHECK constraints when performing the following

actbns
| Executing INSERT and UPDATE statements. Disable a CHECK constraint during
INSERT and UPDATE statements if new data will violate the constraint or if the
constraint should apply only to the data already in the database. Disabling the
constraint allows data in the table to be modified without being validated by the
constraints.
| Implementing replication processing. Disable a CHECK constraint during replication
if the constraint is specific to the source database. When a table is replicated, the table
definition and data are copied from the source database to a destinatbn database. Thase
two databases are usually (but not necessarily) on separate servers. If the CHECK
constraints specific to the source database are not disabled, they might unnecessarily
prevent new data from being entered into the destination database.

Q-21 Explain Select clause The SELECT Clause
The SELECT clause includes the SELECT keyword and the select list. The

select list is a series of expressions separated by commas. Each expressbn defines a
column in the result set. The columns in the result set are in the same order as the
sequence of expressions in the select list. Us i ng Ke yWO rds i n

the Select List
The select list can also contain keywords that control the final format of the

result set.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

The DISTINCT Keyword
The DISTINCT keyword eliminates duplicate rows from a result set. For

example, the Orders table in the Northwind database contains duplicate values in the
ShipCity column. To get a list of the ShipCity values with duplicates removed, enter
the following code; SELECT DISTINCT ShipCity, ShipRegion FROM Orders
ORDER BY ShipCity

The TOP n Keyword
The TOP n keyword specifies that the first n rows of the result set are to be returned. If
ORDER BY is specified, the rows are selected after the result set is ordered. The n
placeholder is the number of rows to return (unless the PERCENT keyword is
specified). PERCENT specifies that n is the percentage of rows in the result set that
are returned. For example, the following SELECT statement returns the first 10 cities
in alphabetic sequence from the Orders table: SELECT DISTINCT TOP 10 ShipCity,
ShipRegion FROM Orders ORDER BY ShipCity

The AS Keyword
You can improve the readability of a SELECT statement by giving a table an

alias (also known as a correlation name or range variable). A table alias can be
assigned either with or without the AS keyword:
| table_name AS table_alias
| table_name table_alias
In the following example, the alias p is assigned to the Publishers table:
USE pubs
SELECT p.pub_id, p.pub_name
FROM publishers AS p

Important: If an alias is assigned to a table, all explicit references to the table in the
Transact-SQL statement must use the alias, notthe table name.

Types of Information in the Select List
A select list can include many types of information, such as a simple expression

or a scalar subquery. The following example shows many of the items that you can
include in a select list:

SELECT FirstName + ‘ ‘ + LastName AS "Employee Name",IDENT IT COL AS
"Employee ID",HomePhone,Region FROM Northwind.dbo.Employees ORDER BY
LastName, FirstName ASC

In this statement, the employees' first and last names are combined intc one column. A
space is added between the first and last names. The name o the column that will
contain the employee names is Employee Name. The result set will also include the
identity column, whbh will be named Employee D in the result set: the HomePhone
column; and the Regbn column. The result set is ordered firsi by last name and then by
first name.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Q-22 Explain different type of joining with suitable example.
Joins are used to retrieve data from multiple tables. In SQL Serverwe have three types
of joins :-

1) Inner Join 2) Outer Join 3) Cross Join

(1) Inner Join- is the default type of join. It produces resuItset which contains
only matched rows.
Example: Display EmpNo, EmpName, DeptName& Location.
Select EmpNo, EmpName, DName, DLoc
From Employees Inner Join Dept
On Employees.DeptNo =
Dept.DeptNo
Note: Tablename.Columnname It refers specific column in the table.
Tablename.* It refers all the columns in the table

(2)Outer Join- produces result set which contains matched rows as well as unmatched
rows. We have three types of outer joins:-

1) Left Outer Join
2) Right Outer Join
3) Full Outer Join

Left outer join- Resultset contains all the rows from left table & only matched rows
from right table.
Ex: Display all the departments' information & corresponding employees' information.

Select Dept.*, EmpName, Sal
From Dept Left outerjoin Employees
On
Dept.DeptNo = Employees.DeptNo

Right outer join - Resultset contains all the rows from right table & only
matched rows from left table.
Ex: Display EmpNo, EmpName & all Deptments names.
Select EmpNo, EmpName, DName
From Employees right outer join Dept
On Employees.DeptNo =
Dept.DeptNo
Full outer join - Resultset contains all the rows from left table & all the rows from
right table.
(4) Cross Join - A join without any condition every row in first table joined with
very row in second table.
Ex:

Select * from
Employees cross join dept
Cross join resultset takes more memory. It is also called as cartesial join. Self

Join - Joining a table with itself is called self join. To work with self join we use alias

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

tables.
Alias tables & Alias columns -

1) Alias tables are used to refer the same table multiple times in a query.
Alias names can be accessible as long as query executed.

Ex:
Select columnist
From tablename aliasname

2) Alias columns are used to change the columns heading in the output. Syntax:
Select columnname as [alias name]
From tablename
Ex:
Select d1.DeptNo as [DeptNumber] From Deptdi

Q-23 Explain bulk insert statement using BCP utility.
The BCP command prompt utility copies SQL Server data to or from a data

file. You will use this utility most frequently to transfer large volumes of date into a
SQL Server table from another program often from another database management
system (DBMS).

When the bcp utility is used, the data is first exported from the source program
to a data file and is then imported from the data file into a SQL Server table.
Alternatively, bcp can be used to transfer data from a SQL Server table to a data file
for use in other programs such as Microsoft Excel. Data can also be transferred into a
SQL Server table from a data file by using the BULK INSERT statement. The BULK
INSERT statement cannot bulk copy data from an instance of SQL Server to a data
file, however. With the BULK INSERT statement, you can bulk copy data to an
instance of SQL Server by using the functionality of the bcp utility in a Transact-SQL
statement (rather than from the command prompt).

If you are importing data, the destination table must already exist. If you are
exporting to a file, bcp will create the file. The number of fields in the data file does
not have to match the numberof columns in the table or be in the same order.

The data in the data file must be in character format or in a format that the bcp
utility generated previously, such as native format. Each column in the table must be
compatible with the field in the data file being copied. For example, it is not possible
to copy an int field to a datetime column using native format bcp.

Relevant permissbns to bulk copy data are required for source and destination
files and tables-; To bulkcopydata from a data file into a table, you must have INSERT
and SELECT permissbns forthe table. To bulk copy a table or view to a data file, you
must have SELECT permission forthe table or view being bulk copied.

The following bcp command copies data from the Publishers table in the Pubs
database and into the Publishers.txt file:
BCP pubs..publishers out publishers.txt -c -T

Using Data Formats
The bcp utility can create or read data files in the default data formats by

specifying a switch at the command prompt. The following table includes a descriptbn

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

of the four default data formats:

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Data
Format

Bep
Switch

BULK INSERT Clause Description

Native -n BULK INSERT – native Use the native data types. Storing
information in native formal is useful
when information must he cop ied
from one instance of SQI Server to
another Using native format saves
lime and space, preventing unneces-
sary conversion of data types in and
from character format. A data file in
native format cannot be read by any
program other than bcp. however.

Character -c DATAFILETYPE –
‘char’

Uses the character (char) data Format
for all columns, providing tabs
between field and a new-line charac-
ter at the end of each row as default
terminators Storing in formation in
character formal is useful when the
data is used with another program,
such as a spreadsheet, or when the
data needs to be copied into an
instance of SQL Server from another
database. Character formal tends to
be used when copying data In ■in
other pro grams thai have the
functionality to export and import
data in plain-text
formal

character ‘widechar’ the DATAFILETYPE clause of the
BULK INSERT statement) uses the
Unicode character data format for all
columns, providing (as default termi-
nators) tabs between fields and a
new-line character at the end of each
row. This formal allows data to be
copied from n server (that is using a
code page different from the code
page used by the client running bep)
another server that uses the same or
different code page as the original
server I his formal prevents the loss
any charac ter data, the source and
destination are not Unitcode data
types. In addition. only a minimum

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

number of extended characters are
lost if the source and destination are
not Unicode data types.

Unicode
 native

 -N QATAFILETYPE
'widenative'

Uses native database data types for all
non-character data and uses. Unicode
character data format for all char acter
{char, m'htir. vorchar. iivn/ihar,
text, and next)data

Q-24 Explain Transact sql server cursor with its suitable
example.

Transact-SQL Server Cursors
Transact-SQL Server cursors are 'based on the DECLARE CURSOR statement

and are used mainly in Transact-SQL scripts, stored procedures, and triggers.
Transact-SQL cursors are implemented on the server and are managed by
Transact-SQL statements sent from the client to the server. They are also contained in
batches, stored procedures, or triggers. When working with Transact-SQL cursors, you
use a set of Transact-SQL statements to declare, populate, and retrieve data (as
outlined in the following steps):
1. Use a DECLARE CURSOR statement to declare the cursor. When you declare

the cursor, you should specify the SELECT statement that will produce the
cursor's result set

2. Use an OPEN statement to populate the cursor. This statement executes the
SELECT statement embedded in the DECLARE CURSOR statement.

3. Use a FETCH statement to retrieve individual rows from the result set.
Typically, a FETCH statement is executed many times (at least once for each
row in the result set).

4. If appropriate, use an UPDATE or DELETE statement to modify the row. This
step is optional.

5. Use a CLOSE statement to close the cursor. This process ends the active cursor
operation and frees some resources (such as the cursor's result set and its locte
on the current row). The cursor is still declared, so you can use an OPEN
statement to reopen it.

6. Use a DEALLOCATE statement to remove the cursor reference from the
current session. This process completely frees all resources allocated to the
cursor (including the cursor name). After a cursor is deallocated, you must issue
a DECLARE statement to rebuild the cursor.
The following set of Transact-SQL statements illustrates how to declare a

cursor, populate that cursor, retrieve data from the result set, update that data, close the
cursor, and dealbcate the cursor:
/* Declares the AuthorsCursor cursor and associates the cursorwith a SELECT
statement. */ USE Pubs
DECLARE AuthorsCursor CURSOR FOR SELECT * FROM Authors ORDER BY
Aujname
/* Populates the AuthorsCursorcursorwith the result setfrom the SELECT statement.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

*/OPEN AuthorsCursor
/* Retrieves the first row from the result set. */ FETCH NEXT FROM AuthorsCursor
/* Updates the phone number within the retrieved row. */ UPDATE Authors SET
Phone = '415 658-9932' WHERE CURRENT OF AuthorsCursor /* Closes the
AuthorsCursorcursor. */ CLOSE AuthorsCursor /* Deallocates the
AuthorsCursorcursor. */ DEALLOCATE AuthorsCursor

Q-25 Write a step to create a stored procedure-using wizard.
The Create Stored Procedure wizard walks you through the steps necessary to

create a new stored procedure. You can access the wizard by selecting Wizards from
the Tools menu. In the Select Wizard window, expand the Database option, then select
the Create Stored Procedure Wizard and click OK. From there, you complete the steps
in the wizard. Figure 8.2 shows the options on the Welcome to the Create Stored
Procedure wizard screen that you specify when you run the Create Stored Procedure
wizard.

Creating and Adding Extended Stored Procedures
After creating an extended stored procedure, you must register it with SQL

Server. Only users who have the sysadmin role can register an extended stored
procedure with SQL Server. To register the extended stored procedure, you can use the
sp_addextendedproc system stored procedure in Query Analyzer or use Enterprise
Manager. In Enterprise Manager, expand the Master database, right-click the Extended
Stored Procedures node, and then click New Extended Stored Procedure. Extended
stored procedures can be added only to the Master database.

Deferred Name Resolution
When a stored procedure is created, SQL Server does not check for the

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

existence of any objects that are referenced in it. This feature exists because ifs
possible that an object, such as a table referenced in the stoned procedure, does not
exist when the stored procedure is created. This feature is called deferred name
resolution. Object verification occurs when the stored procedure is executed. When
referring to an object (such as a table) in a stored procedure, make sure to specify the
owner of the object. By default, SQL Server assumes that the creator of the stored
procedure is also the owner of the object referenced in the procedure. To avoid
confusion, consider specifying dbo as the owner when creating all objects (both stored
procedures and objects referenced in the stored procedures).

Executing a Stored Procedure
As you have seen in previous lessons, you can run a stored procedure in Query
Analyzer simply by typing its name and any required parameter values. For example,
you viewed the contents of a stored procedure by typing sp_helptext and the name of
the stored procedure to be viewed. The name of the stored procedure to be viewed is
the parametervalue.

If the stored procedure isn't the first statement in a batch, in order to run it you
must precede the name of the stored procedure with the EXECUTE keyword or with
the shortened version of the keyword, EXEC.

Calling a Stored Procedure for Execution
When you specify the procedure name, the name can be fully qualified, such as

[database_name].[owner].[procedure_name]. Or, if you make the database containing
the stored procedure the current database (USE database_name), then you can execute
the procedure by specifying [owner].[procedure_name]. If the OOOOOOOprocedure
name is unique in the active database, you can simply specify [procedure_name].

owner other than dbo. SQL Server does not automatically search the Master
database for extended stored procedures. Therefore, either fully qualify the name
of an extended stored procedure or change the active database to the location of
the extended stored procedure.

Specifying Parameters and Their Values
If a stored procedure requires parameter values, you must specify them when
executing the procedure. When input and output parameters are defined, they are
preceded by the "at" sign (@), followed by the parameter name and the date type
designation. When they are called for execution, you must include a value for the
parameter (and optionally, the parameter name). The next two examples run the
au_info stored procedure in the Pubs database with two parameters:
@lastname and @firstname:
--call the stored procedure with the parameter values.
USE Pubs
GO
EXECUTE aujnfo Green, Marjorie -call the stored procedure with parameter
names and values.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

USE Pubs
GO
EXECUTE aujnfo
@lastname = 'Green', @firstname = 'Marjorie'
Q-27 How to Create Trigger Using Transect SQL Statement ?

Creating Triggers Using Transact-SQL
You can use the CREATE TRIGGER statement to create a trigger by using

Query Analyzer or a command-prompt tool such as osql. When using CREATE
TRIGGER, you must specify the trigger name, the table or view upon which the
trigger is applied, the class of trigger (INSTEAD OF or AFTER), the event or events
that fire the trigger, and the task that you wish the trigger to perform. Optionally, you
can specify whether the trigger should be replicated or encrypted. The WFTH
APPEND clause remains for backward compatibility but shouldn't be used to create
triggers for a SQL Server 2000 database.
The main clauses in a CREATE TRIGGER statement can be summarzed as
follows:
CREATE TABLE trigger_name
ON tablejiame or viewname
FOR trigger_class and triggerjype(s)
AS Transact-SQL statements
This section discusses the CREATE TABLE, ON, and FOR /AFTER/INSTEAD OF
clauses in detail and provides examples of how they are used in a trigger statement.

Lesson 3 discusses the Transact-SQL statements appearing after the AS clause. For
more details about trigger clauses not shown here, refer to SQL Server Books Online.

The CREATE TRIGGER Clause
Trigger creation begins with the CREATE TRIGGER clause followed by a

trigger name. Triggers do not albw specifying the database name as a prefix to the
object name. Therefore, select the database with the USE database name clause and
the GO keyword before creating a trigger. GO is specified because CREATE
TRIGGER must be the first statement in a query batch.

Permission to create triggers defaults to the table owner. For consistency,
consider creating tables, triggers, and other database objects so that dbo is the owner.
For example, to create a trigger named Alerter in the BookShopDB database, you can
use the following Transact-SQL code:

USE BookShopDB
GO
CREATE TRIGGER dbo.alerter
Trigger names must follow the rules for identifiers. For example, if you decide to
create a trigger named Alerter for the Employees Table, you must enclose the
name in brackets as shown:

CREATE TRIGGER dbo.[alerter for employees table] Administering the trigger

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

object, such as deleting it, also requires that you follow the rules for identifiers.

The ON Clause
Triggers must be assigned to a table or view. Use the ON clause to instruct the trigger
on to what table or view it should be applied. When a trigger is applied, the table or
view is referred to as the trigger table or the trigger view. For consistency, specify the
table or view owner after the ON clause. For example, to apply a trigger to the
Employees table named Alerter (where both objects—the table and the trigger— are
owned by dbo), you can use the following Transact-SQLcode:

CREATE TRIGGER dbo.alerter
 ON dbo .employees

A trigger is applied only to a single table or view. If you need to apply the same
trigger task to another table in the database, create a trigger of a different name that
contains the same business logic. Then, apply the new trigger to the
other table. The default trigger class, AFTER, can be applied only to a table. The new
trigger class, INSTEAD OF, can be applied to either a table or a view.

The FOR, AFTER, and INSTEAD OF Clauses
A trigger event type must be specified when the trigger is created. Valid event

types include INSERT, UPDATE, and DELETE. A single trigger can be fired because
of one, two, or all three of the events occurring. If you want a trigger to fire on all
events, follow the FOR, AFTER, or INSTEAD OF clause with INSERT, UPDATE,
and DELETE. The event types can be listed in any order. For example, to make the
trigger named Alerter fire on all events, you can use the following
Transact-SQL code: CREATE
TRIGGER dbo.alerterON
dbo.employees
FOR INSERT, UPDATE, DELETE The FOR clause is synonymous with the AFTER
clause. Therefore, the previous code example creates an AFTER trigger. To create
Alerter as an INSTEAD OF trigger, you can use the following Transact-SQL code:

CREATE TRIGGER dbo.alerter
ON d bo .employees
INSTEAD OF INSERT, UPDATE, DELETE Notice that the FOR clause is
replaced with INSTEAD OF.

The AS Clause
The AS clause and the Transact-SQL language following it designates the task

that the trigger will perform. The following example shows how to create an Alerter
trigger that sends an e-mail to a user named BarryT when an INSERT, UPDATE,
orDELETE occurs on the employees table:
USE BookShopDB
GO
CREATE TRIGGER dbo.alerter

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

ON dbo.employees
AFTER INSERT, UPDATE, DELETE
AS EXEC master..xp_sendmail
'BarryT,
'A record was just inserted, updated or deleted in the Employees table.'
GO

This example is kept simple so that you can see clearly how a task is created in
a trigger. There are a number of ways to make the task more useful. For example, you
could write the task so that the e-mail message details the exact change that occurred.
Lesson 3 explores more complex trigger tasks.

Q-28 Explain Pseudo table with trigger for insert & Delete
statement.
When an INSERT, UPDATE, or DELETE trigger fires, the event creates one or

more pseudo tables (also known as logical tables). These logical tables can be thought
of as the transaction logs of the event. There are two types of logical tables: the
Inserted table and the Deleted table. An insert or update event creates an Inserted
logical table. The Inserted logical table contains the record set that has been added or
changed. The UPDATE trigger also creates a Deleted logical table. The Deleted
logical table contains the original record set as it appeared before the update. The
following example creates a trigger that displays the contents of the Inserted and
Deleted tables following an update event to the Authors table:

CREATE TRIGGER dbo.updatetables
ON d bo .authors
AFTER UPDATE
AS
SELECT "Description" = The Inserted table:'
SELECT * FROM inserted
SELECT "Description" = The Deleted table:'
SELECT* FROM deleted
Following a simple UPDATE statement that changes an author's name from
Dean to Denby, the trigger displays the following results:
The Inserted table:
Straight Denby Oakland CA 94609
The Deleted table:
Straight Dean Oakland CA 94609
The Authors table (trigger table) contains the updated record after the update trigger
runs. When the trigger fires, the update to the Authors table can be rolled back by
programming bgic into the trigger. This transaction rollback capability also applies to
INSERT and DELETE triggers.

Q-29 explain view and its function Overview of Views:
A view acts as a filter on the underlying tables referenced in the view. The

query that defines the view can be from one or more tables or from other views in the

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

current database or other databases. You can also use dBtributed queries to define
views that use data from multiple heterogeneous sources. This functionality is useful,
for example, if you want to combine similarly structured data from different servers,
each of which stores data for a different region of your organization.

A view can be thought of as either a virtual table or a stored query. The data
accessible through a standard view is not stored in the database as a distinct object.
What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table
by referencing the view name in Transact-SQL statements in the same way a table is
referenced.

Figure 10.1 shows a view based on a SELECT statement that retrieves data
from the Titles table and the Publishers table in the Pubs database.

There are no restrictions on querying through views and few restrictions on
modifying data through them. In addition, a view can reference another view. You can
use a view to perform any or a II of the following functions:
| Restricting a user to specific rows in a table
| Restricting a user to specific columns
| Joining columns from multiple tables so that they boklike a single table
| Aggregating information instead of supplying details
Views can be used to partition data across multiple databases or instances of
SQL Server 2000. Partitioned views enable you to distribute database processing
across a group of serve is.

SQL Server 2000 also supports indexed views, which greatly improve the
performance of complex views such as those usually found in data warehouses or
other decision support systems. With a standard view, the result set is not saved in the
database. Rather, it is dynamically incorporated into the logic of the statement and is

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

built dynamically at run time.
Complex queries, however, such as those in decision support systems, can

reference large numbers of rows in base tables and aggregate large amount of
information into relatively concise aggregates (such as sums or averages). SQLServer

2000 supports creating a clustered index on a view that implements such a
complex query. When the CREATE INDEX statement is executed, the result set of the
view SELECT is stored permanently in the database. Future SQL statements that
reference the view will have substantially better response times. Modifications to the
base data are automatically reflected in the view.

Q-31 Give a example of clustered index view
Creating a clustered index on a view stores the data as it exists at the time the

index is created. An indexed view also automatically reflects modifications made to
the data in the base tables after the index is created, the same way as an index created
on a base table. As modifications are made to the data in the base tables, they are also
reflected in the data stored in the indexed view. Because the view's clustered index
must be unique, SQL Server can more efficiently find the index rows affected by any
data modification.

Indexed views can be more complex to maintain than indexes on base tables.
You should create an index on a view only if the improved speed in retrieving the
result outweighs the increased overhead of making modifications. This improvement
usually zoccurs for views that are mapped over relatively static data, process many
rows, and are referenced by many queries.

A view must meet the following requirements before you can create a clustered
index on it:
| The ANSI_NULLS and QUOTED_DENTFIER options must have been set to
ON when the CREATE VIEW statement was executed. The OBJECTPROPERTY
function reports this setting for views through the ExeclsAnsiNullsOn or
ExeclsQuotedldentOn properties.
| The ANSIJMULLS option must have been set to ON for the execution of all
CREATE TABLE statements that create tables referenced by the view.
| The view must not reference any other views, only base tables.
| All base tables referenced by the view must be in the same database as the
view and must have the same owner as the view.
| The view must be created with the SCHEMABNDING optbn.
SCHEMABINDING binds the view to the schema of the underlying base tables.
| User-defined functions referenced in the view must have been created with the
SCHEMABINDING option.
| Tables and user-defined functions must be referenced by two-part names. Onepart,
three-part, and four-part names are not allowed.
| All functions referenced by expressions in the view must be deterministic. The
IsDeterministic property of the OBJECTPROPERTY function reports whether a
user-defined function is deterministic.
| If GROUP BY is not specified, the view select list cannot contain aggregate
expressions.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

| If GROUP BY is specified, the view select list must contain a COUNT_BIG(*)
expression, and the view definition cannotspecify HAVING, CUBE, orROLLUP.
| A column resulting from an expression that either evaluates to a float value or
uses float expressions for its evaluation cannot be a key of an index in an
indexed view or table.

In addition to the previous restrictions, the SELECT statement in the view
cannot contain the following Transact-SQLsyntax elements:

| The asterisk (*) syntax to specify columns in a select list
| A table column name used as a simple expression that is specified in more than one
view column
| A derived table
| Rowset functions
| A UNION operator
| Subqueries
| Outer or self joins
| The TOP clause
| The ORDER BY clause
| The DISTINCT keyword
| COUNT(*) (COUNT_BIG(*) is allowed)
| TheAVG, MAX, MIN, STDEV, STDEVP.VAR, or VARP aggregate functions
| A SUM function that references a nullable expression
| The full-text predicates CONTAINS orFREETEXT
| The COMPUTE or COMPUTE BY clauses

Q-30 Write a note on scenario for using a view. Scenarios for
Using Views

You can use views in a variety of ways to return data.

To Focus on Specific Data
Views enable users to focus on specific data that interests them and on the

specific tasks for which they are responsible. You can leave out unnecessary data in
the view. This action also increases the security of the data, because users can see only
the data that is defined in the view and not the data in the underlying table.

To Simplify Data Manipulation
Views can simplify how users manipulate data. You can define frequently used

joins, UNION queries, and SELECT queries as views so that users do not have to
specify all of the conditions and qualifications each time an additional operation is
performed on that data. For example, a complex query that is used for reporting
purposes and that performs subqueries, outer joins, and aggregation to retrieve data
from a group of tables can be created as a view. The view simplifies access to the data
because the underlying query does not have to be written or submitted each time the
report is generated. The view is queried instead. You can also create inline
user-defined functions that operate logically as parameterized views (views that have

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

parameters in WHERE-clause search conditions).

To Customize Data
Views enable different users to see data in different ways, even when they are

using the same data concurrently. This feature is particularly advantageous when users
who have many different interests and skill levels share the same database. For
example, a view can be created that retrieves only the data for the customers with
whom an account manager deals. The view can determine which data to retrieve based
on the login ID of the account manager who uses the view.
To Export and Import Data

You can use views to export data to other applications. For example, you might
want to use the Stores and Sales tables in the Pubs database to analyze sales data in
Microsoft Excel. To perform this task, you can create a view based on the Stores and
Sales tables. You can then use the bicep utility to export the data defined by the view.
Data can also be imported into certain views from date files by using the bops utility
or the BULK INSERT statement, providing that rows can be inserted into the view by
using the INSERT statement

To Combine Partitioned Data
The Transact-SQL UNION set operator can be used within a view to combine

the result of two or more queries from separate tables into a single result set. This
display appears to the user as a single table (called a partitioned view). For example, if
one table contains sales data for Washington and another table contains sales data for
California, a view could be created from the UNDN of those tables. The view
represents the sales data for both regbns. To use partitioned views, create several
identical tables, specifying a constraint to determine the range of data that can be
added to each table. The view is then created by using these base tables. When the
view is queried, SQL Server automatically determines which tables are affected by the
query and references only those tables. For example, if a query specifies that only sales
data for the state of Washington is required, SQL Server reads only the table
containing the Washington sales data, no other tables are accessed. Partitioned views
can be based on data from multiple heterogeneous sources (such as remote servers),
not just from tables in the same database. For example, to combine data from different
remote servers (each of stores data for a different region of your organization), you
can create distributed queries that retrieve data from each data source, and you can
then create a view based on those distributed queries. Any queries read only data from
the tables on the remote servers that contain the data requested by the query. The other
servers referenced by the distributed queries in the view are not accessed. When you
partition data across multiple tables or multiple servers, queries accessing only a
fraction of the data can run faster because there is less data to scan. If the tables are
located on different servers or on a computer that has multiple processors, each table
involved in the query can also be scanned in parallel, thereby improving query
performance. Additionally, maintenance tasks (such as rebuilding indexes or backing
up a table) can be executed more quickly.

By using a partitioned view, the data still appears as a single table and can be

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

queried as such without having to reference the correct underlying table manually.
Partitioned views are updateable if either of these conditions is met: An INSTEAD OF
trigger is defined on the view with logic to support INSERT, UPDATE, and DELETE
statements, j Both the view and the INSERT, UPDATE, and DELETE statements
follow the rules defined for updateable, partitioned views.

Q-31: Explain Types of Index ?
Index Types

There are two types of indexes: clustered and non clustered. Both types of
indexes are structured as B-trees. A clustered index contains table records in the leaf
level of the B-tree. A non clustered index contains a bookmark to the table records in
the leaf level. If a clustered index exists on a table, a non clustered index uses it to
facilitate data lookup. In most cases, you will create a clustered index on a table before
you create non clustered indexes.

Clustered Indexes
There can be only one clustered index on a table or view, because the clustered

index key physically sorts the table or view. This type of index is particularly efficient
for queries, because data records—also known as data pages—are stored in the leaf
level of the B-tree. The sort order and storage location of a clustered index is
analogous to a dictionary in that the words in a dictionary are sorted alphabetically and
definitions appear next to the words.

When you create a primary key constraint in a table that does not contain a
clustered index, SQL Server will use the primary key column for the clustered index
key. If a clustered index already exists in a table, a nonclustered index is created on the
column defined with a primary key constraint. A column defined as the PRIMARY
key is a useful index because the column values are guaranteed to be unique. Unique
values create smaller B-trees than redundant values and thus make more efficient
lookup structures.
Note: A column defined with a unique constraint creates a nonclustered index
automatically.

To force the type of index to be created fora column or columns, you can
specify the CLUSTERED or NONCLUSTERED clause in the CREATE TABLE,
ALTER TABLE, or CREATE INDEX statements. Suppose that you create a Persons
table containing the following columns: PersonID, FirstName, LastName, and Social-
SecurityNumber. The PersonID column is defined as a primary key constraint, and the
SocialSecurityNumber column is defined as a unique constraint. To make the
SocialSecurityNumber column a clustered index and the PersonID column a
nonclustered index, create the table by using the following syntax:

CREATE TABLE dbo.Persons
(
person id smallint PRIMARY KEY NONCLUSTERED,
firstname varchar(30),
lastname varchar(40), socialsecuritynumber char(11)

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

UNIQUE CLUSTERED
)
Indexes are not limited to constraints. You create indexes on any column or
combination of columns in a table or view. Clustered indexes enforce uniqueness
internally. Therefore, if you create a non unique, clustered index on a column that
contains redundant values, SQL Server creates a unique value on the redundant
columns to serve as a secondary sort key. To avoid the additional work required to
maintain unique values on redundant rows, favor clustered indexes for columns
defined with primary key constraints.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Non clustered Indexes
On a table or view, you can create 250 non clustered indexes or 249 non

clustered indexes and one clustered index. You must first create a unique clustered
index on a view before you can create non clustered indexes. This restriction does not
apply to tables, however. A non clustered index is anabgous to an index in the back of
a book. You can use a book's index to bcate pages that match an index entry. The
database uses a nonclustered index to locate mathing records in the database. If a
clustered index does not exist on a table, the table is unsorted and is called a heap. A
nonclustered index created on a heap contains pointers to table rows. Each entry in an
index page contains a row ID (RID). The RID is a pointer to a table row in a heap, and
it consists of a page number, a file number, and a slot number. If a clustered index
exists on a table, the index pages of a nonclustered index contain clustered index keys
rather than RIDs. An index pointer, whether it is a RID or an index key, is called a
bookmark.

Q-32 Explain Index Characteristics ?
Index Characteristics

A number of charactereristics (aside from the index type, which is clustered or
nonclustered) can be applied to an index. An index can be defined as follows:
| Unique duplicate records are not allowed
| A composite of columns—an index key made up of multiple columns
| With a fill factor to allow index pages to grow when necessary
| With a pad index to change the space allocated to intermediate levels of the B-tree
| With a sort order to specify ascending or descending index keys

Note: Additional characteristics, such as file groups for index storage, can be applied
to an index. Refer to CREATE INDEX in SQL Server Books Online and to Lesson 2
for more information.

Indexes are applied to one or more columns in a table or view. With some
limitations, you can specify indexes on computed columns.

Q-33 Write Note on Transect Log Architecture ?
Transaction Log Architecture

Every SQL Server database has a transaction log that records all transactions
and the database modifications made by each transaction. This record of transactions
and their modifications supports three operations:
| Recovery of individual transactions. If an application issues a ROLLBACK statement
or if SQL Server detects an error (such as the loss of communication with a client), the
log records are used to roll back any modifications made during an incomplete
transaction.
| Recovery of all incomplete transactions when SQL Server is started. If a server
running SQL Server fails, the databases might be left in a state where some
modifications were never written from the buffer cache to the data files, and there
might be some modifications from incomplete transactions in the data files. When a
copy of SQL Server is started, it runs a recovery of each database. Every modification

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

recorded in the log that was not written to the data files is rolled forward. Every
incomplete transaction found in the transaction log is then rolled back to ensure that
the integrity of the database is preserved.
| Rolling a restored database forward to the point of failure. After the loss of a
database, as is possible if a hard drive fails on a server that does not have a Redundant
Array of Independent Disks (RAID), you can restore the database to the point of
failure. You first restore the last fijll or differential database backup and then restore
the sequence of transaction log backups to the point of failure. As you restore each log
backup, SQL Server reapplies all of the modifications recorded in the log to roll
forward all of the transactions. When the last log backup is restored, SQL Server then
uses the log information to roll back all transactions that were not complete at that
point.

The transaction log is not implemented as a table but as a separate file or set of
files in the database. The log cache is managed separately from the buffer cache for
data pages, resulting in simple, fast, and robust code within the database engine. The
format of log records and pages is not constrained to follow the format of data pages.
You can implement the transaction log on several files. You can also define the files to
autogrow as required, which reduces the potential of running out of space in the
transaction log and reduces administrative overhead. The mechanism for truncating
unused parts of the log is quick and has a minimal effect on transaction throughput.

Q-34 explain types of transaction
SQL Server supports three types of transactions: explicit, autocommit, and

implicit.

Explicit Transactions
An explicit transaction is one in which you explictly define both the start and

the end of the transaction. Explicit transactions were also called user-defined or
userspecified transactions in earlier versions of SQL Server. DB-Library applications
and Transact-SQL scripts use the BEGIN TRANSACTION, COMMIT
TRANSACTDN, COMMIT WORK, ROLLBACK TRANSACTION, or ROLLBACK
WORK Transact-SQL statements to define explicit transactions: BEGIN
TRANSACTDN. Marks the starting point of an explicit transaction for a connection.
COMMIT TRANSACTION or COMMIT WORK. Used to end a transaction
successfully if no errors were encountered. All data modifications made in the
transaction become a permanent part of the database. Resources held by the
transaction are freed. ROLLBACK TRANSACTION or ROLLBACK WORK. Used
to erase a transaction in which errors are encountered. All data modified by the
transaction is returned to the state it was in at the start of the transaction. Resources
held by the transaction are freed. In the following transaction, the ROLLBACK
TRANSACTDN statement rolls back any changes made by the UPDATE statement:
BEGIN TRANSACTION GO USE Northwind
GO
UPDATE Cus tome is
SET ContactName = 'Hanna Moos'

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

WHERE CustomerID = BLAUS'
GO
ROLLBACK TRANSACTION
GO
If a COMMIT TRANSACTION statement had been used in this example, rather than
a ROLLBACK TRANSACTION statement, the update would have been made to the
database. You can also use explicit transactions in the OLE DB, ADO, and ODBC
APIs. For more information about using explicit transactions with these APIs, refer to
SQL Server Books Online. Explict transaction mode lasts only for the duration of the
transaction. When the transaction ends, the connection returns to the transaction mode
that it was in before the explicit transaction was started (either implicit or auto commit
mode).

Autocommit Transactions
Autocommit mode is the default transaction management mode of SQL Server.

Every Transact-SQL statement is committed or rolled back when it is completed. If a
statement completes successfully, it is committed; if it encounters any error, it is rolled
back. A SQL Server connection operates in auto commit mode whenever this default
mode has not been overridden by either explicit or implicit transactions. Auto commit
mode is also the default mode for ADO, OLE DB, ODBC, and DBLibrary. A SQL
Server connection operates in autocommit mode until a BEGIN TRANSACTION
statement starts an explicit transaction or until implicit transaction mode is set to ON.
When the explicit transaction is committed or rolled back or when imp licit
transaction mode is turned off, SQL Server returns to autocommit mode.

Implicit Transactions
When a connection is operating in implicit transaction mode, SQL Server

automatically starts a new transaction after the current transaction is committed or
rolled back. You do nothing to delineate the start of a transaction; you only commit or
roll back each transaction. Implicit transaction mode generates a continuous chain of
transactions. After implicit transaction mode has been set to ON for a connection, SQL
Server automatically starts a transaction when it first executes any of the following
statements: The transaction remains in effect until you issue a COMMIT or
ROLLBACK statement. After the first transaction is committed or rolled back, SQL
Server automatically starts a new transaction the next time any of these statements is
executed by the connection. SQL Server keeps generating a chain of implicit
transactions until implicit transaction mode b turned off. Implicit transaction mode b
set either by using the Transact-SQL SET statement or by using database API
functions and methods.
ALTER TABLE INSERT
CREATE OPEN
DELETE REVOKE
DROP SELECT
FETCH TRUNCATE TABLE
GRANTUPDATE

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Transact-SQL Implicit Transactions
DB-Library applications and Transact-SQL scripts can use the Transact-SQL

SET IMPL!CIT_TRANSACTIONS ON statement to start implicit transaction mode.
You should use the SET IMPLICIT RAWS ACT IONS OFF statement at the end of
the batch to turn implicit transaction mode off. Use the COMMFT TRANSACTDN,
COMMIT WORK, ROLLBACK TRANSACTION, or ROLLBACK WORK
statements to end each transaction. The following statement first creates the
ImplicitTran table, then starts implicit transaction mode, then runs two transactions,
and then turns off implict transaction mode:
USE Pubs
GO
CREATE TABLE ImplicitTran
(
Cola NT PRIMARY KEY,
Colb CHAR(3) NOT NULL
)
GO
SET IMPLICIT_TRANSACTIONS ON
GO
/* First implicit transaction started
by an INSERT statement 7
INSERT INTO ImplicitTran
VALUES (1,'aaa')
GO
INSERT INTO ImplicitTran
VALUES (2, 'bbb')
GO
/* Commit first transaction */
COMMIT TRANSACTION
GO
/* Second implicit transaction started
by an INSERT statement 7 INSERT
INTO ImplicitTran VALUES (3, 'ccc)
GO
SELECT *
FROM ImplicitTran
GO
/* Commit second transaction */
COMMIT TRANSACTION
GO
SET IMPLICITJTRANSACTIONS OFF
GO

API Implicit Transactions
You can use the ODBC and OLE DB APIs to set implicit transactions. Refer to

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

SQL Server Books Online for more information. ADO does not support implicit
transactions.ADO applications use either autocommit mode or explicit transactions.

Distributed Transactions
Distributed transactions span two or more servers known as resource managers.

The management of the transaction must be coordinated among the resource managers
by a server component called a transaction manager. SQL Server can operate as a
resource manager in distributed transactions coordinated by transaction managers such
as the Microsoft Distributed Transaction Coordinator (MS DTC), or by other
transaction managers that support the X/Open XA specification for Distributed
Transaction Processing. A transaction within a single SQL Server that spans two or
more databases is actually a distributed transaction. SQL Server, however, manages
the distributed transaction internally. To the user, it operates as a local transaction. At
the application, a distributed transaction is managed in much the same way as a local
transaction. At the end of the transaction, the application requests the transaction to be
either committed or rolled back. A distributed commit must be managed differently by
the transaction manager to minimize the risk that a network failure might result in
some resource managers successfully committing while others are rolling back the
transaction. You can achieve this goal by managing the commit process in two phases:
Prepare phase. When the transaction manager receives a commit request, it sends a
prepare command to all of the resource managers involved in the transaction. Each
resource manager then does everything required to make the transaction durable, and
all buffers holding bg images forthe transaction are flushed to disk As each resource
manager completes the prepare phase, it returns success or failure of the prepare phase
to the transaction manager, j Commit phase. If the transaction manager receives
successful prepares from all of the resource managers, it sends commit commands to
each resource manager. The resource managers can then complete the commit. If all of
the resource managers report a successful commit the transaction manager then sends
a success notification to the application. If any resource manager reports a failure to
prepare, the transaction manager sends a ROLLBACK command to each resource
manager and indicates the failure of the commit to the application. SQL Server
applications can manage distributed transactions eitherthrough Transact-SQL
orthrough the database API.

Transact-SQL Distributed Transactions
The distributed transactions started in Transact-SQL have a relatively simple

structure: 1. A Transact-SQL script or application connection executes a
Transact-SQL statement that starts a distributed transaction. 2. The SQL Server
instance executing the statement becomes the controlling server in the transaction. 3.
The script or application then executes either distributed queries against linked servers
or remote stored procedures against remote servers. 4. As distributed queries and
remote procedure calls are made, the controlling server automatically calls MS DTC to
enlist the linked and remote servers in the distributed transaction. 5. When the script or
application issues either a COMMIT or ROLLBACK statement, the controlling SQL
Server calls MS DTC to manage the two-phase commit process or to notify the linked

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

and remote servers to roll backtheir

MS DTC Distributed Transactions
Applications written by using OLE DB, ODBC, ADO, or DB-Library can use

Transact-SQL distributed transactions by issuing Transact-SQL statements to tart and
stop Transact-SQL distributed transactions. OLE DB and ODBC, however, also
contain support at the API level for managing distributed transactions. OLE DB and
ODBC applications can use these API functions to manage distributed transactions
that include other COM resource managers that support MS DTC transactions other
than SQL Server. They can also use the API functions to gain more control over the
boundaries of a distributed transaction that includes several SQL Servers. The
distributed transactions started in Transact-SQL have a relatively simple structure. The
Transact-SQL statements controlling the distributed transactions are few because SQL
Server and MS DTC do most of the work internally.

Q-35 What is deadlock ? How to minimize it using SQL Server?
Minimizing Deadlocks

Although deadlocks cannot be avoided completely, the number of deadlocks
can be minimized. Minimizing deadbcks can increase transaction throughput and
reduce system overhead because fewer transactions are rolled back, undoing all of the
work performed by the transaction. In addition, fewer transactions are resubmitted by
applications because they were rolled back when they were deadlocked.

You should adhere to the following guidelines to help minimize deadlocks:
| Access objects in the same order.
| Avoid user interaction during transactions.
| Keep transactions short and in one batch.
| Use a low isolation level.
| Use bound connections.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Q-36 Explain requirement for database security plan.
Requirements
In Chapter 3, "Designing a SQL Server Database," you learned that a security

plan identifies database users, the data objects that they can access, and activities that
they can perform in the database. Gather this information by extracting security
requirements from system requirements and by determining any other security
requirements that might not be part of the system requirements. For example, system
requirements might not include security administrative activities such as auditing the
execution of a stored procedure or running a database backup. After listing the data
objects that need protection and the restricted activities that users perform in the
database, create a list of unique users or classes of users and groups that access the
database. Armed with this information, create a User-to-Activity Map. The map is a
table that cross-references the two lists to identify which users can access protected
data objects and which restricted activities they can perform in the database.

Suppose you have an employee database that is accessed by 100 users. The
database contains an employee information table (Employees), a salary grade table
(Salaries), and an employee location table (Locations). All employees access the
Employees table and the office location information in the Locations table. A small
group of employees can access the Salaries table and the home address information in
the Locations table. The same small group of employees can add, delete, and modify
data in all of these tables. Another user is responsible for performing nightly backups,
and another group of users can create and delete data objects in the database. The
security requirements for this simple database example are as follows:
| All employees run SELECT statements against the Employees table.
| All employees run SELECT statements on the office location information in the
Locatbns table.
| A small group of employees runs INSERT, DELETE, and UPDATE statements
against all columns in all three tables.
| A user runs nightly database backups and performs general database
administration and requires full server access.
| A group of users runs CREATE and DROP statements in the database. The list of
unique users, classes of users, and groups that access this database is as follows:
| All employees are a class of users covered by the Public database role.
| Members of the Hum an Resources Windows 2000 group require restricted
access to the database.
| User account JDoe is a database administrator.
| Company database developers create and delete objects in SQL Server. The
following User-to-Activity Map is consiructed from the information provided:

Q-37 Explain steps for index tuning using wizard ?
Running the Index Tuning Wizard

You can start the Index Tuning wizard from Enterprise Manager, Query
Analyzer, or SQL Profiler. In Enterprise Manager, the Index Tuning wizard is a listed
wizard in the Select wizard window. In Query Analyzer, the Index Tuning wizard is an
option in the Query menu, and in SQL Profiler it's an option in the Tools menu.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

When you start the Index Tuning wizard, an introductory screen appears, as
Shown in Figure 14.3.

After connecting to the server, the Index Tuning wizard requires that you select
a database and specify whether you want to keep the existing indexes, whether you
want to create indexed views, and how thorough of an analysis should be performed.
The wizard does not recommend that any indexes be dropped if the Keep All Existing
Indexes checkbox is selected. Recommendations will include only new indexes. If you
are running SQL Server 2000 Enterprise Edition or Developer Edition, the Index
Tuning wizard can create indexes on views if the Add Indexed Views checkbox is
selected. The more thorough the analysis, the more significant will be the CPU
consumption while analysis is being performed. If CPU consumption is a problem,
take anyof the following measures:
| Lower the level of analysis by selecting the Fast or Medium tuning modes.
However, a thorough analysis can result in a greater overall improvement in
performance.
| Analyze a smaller workload and fewer tables.
| Run the analysis against a test version of the production server. Save the
results to a script and then run the script against the production server.
| Run the wizard on a client computer, not the SQL Server.

After you select the Index Tuning wizard configuration, you must select a
workload. Workload data comes from a trace file or trace table or a selection in the
 Query Analyzer.

The Query Analyzer selection option is available only if you start the Index

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

Tuning wizard from the Query Analyzer. Do not include index or query hints in the
workload. If you do, the Query Optimizer formulates an execution plan based on the
index hints, which might prevent the selection of an ideal execution plan.

After you select the workload, you can change the default index tuning
parameters, select the tables for the wizard to analyze, and then run the analysis.
Folbwing the analysis, the wizard might not make index suggestions if there isn't
enough data in the tables being sampled or if recommended indexes do not offer
enough projected improvement in query performance overexisting indexes.
To configure and run the Index Tuning wizard
1. Open Query Analyzer, and connectto your local server.
2. In the Editor pane of the Query window, type any character or press the space

bar.
You must take this action for the Index Tuning wizard to be an available optbn
in the Query pull-down menu.

3. Click the Query menu and then click Index Tuning wizard. The Webome to the
IndexTunhg wizard screen appears.

4. Click Next. The Select Server And Database screen appears.
5. Select BookShopDB from the Database drop-down list box and click Next. The

Specify Workload screen appears. Notice that the Query Analyzer radio button
is selected. This option is available only when you start the Index Tuning
wizard from Query Analyzer.

6. Click the My Workload File radio button. An Open window appears and
TraceOLtrc is listed in the folder and file pane.

7. Double-click TraceO1.trc. The path and file name of the trace file appears in
the Specify Workbad screen.

8. Press the Advanced Options button to review the index tuning parameters and
then click Cancel.

9. Press Next on the Specify Workload screen. The Select Tables to Tune screen
appears.

10. Scroll down in the list and select the [dbo].[table01] checkbox.
11. Click Next. The analysis runs as the Index Tuning wizard determines the type

of' indexes to recommend. When the analysis completes, the
Index Recommendations screen appears and two indexes are recommended.
Below the index recommendations a bullet shows the estimated query
performance improvement based on the sampled workload. The Index Tuning
wizard recommends a clustered index named Tabled 1 with a key on the
UniquelD column and a non clustered index named TableO12 with a key on the
Col03 and LongCol02 columns. Later in the Index Tuning wizard screens, you
can choose to save a script to create these indexes. You can customize the script
before executing it. For example, you might want to name the indexes
differently.

12. Click the Analysis button and review the various reports available from the
Reports drop-down list box, then clickCbse.

13. in the Index Recommendations screen, click Next. The Schedule hdex Update
Job screen appears.

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

 (Word to PDF Converter - Unregistered)
http://www.Word-to-PDF-Converter.net………………………

………………………………………………………………………………………………

14. Click the Apply Changes checkbox and then click Next. The Completing The
IndexTuning wizard screen appears.

15. Click Finish. The database b updated with the recommended changes and then
a message box appears, indicating that the Index Tuning wizard has
successfully completed.

16. Click OK to close the IndexTuning wizard.
17. Leave Query Analyzer open to complete the next practice.

@ @ @ @ @ @

http://www.Word-to-PDF-Converter.net
http://www.Word-to-PDF-Converter.net

